| Bases match
together by set
rule (A-T and C-G) | Production of
mRNA copy from a
strand of DNA | Group of three
tRNA bases
complimentary to
mRNA | Chemical bonds holding amino acids together in chain | |--|---|--|---| | Complimentary base pairs | Transcription | Anticodon | Peptide bond | | Section of DNA
not translated
into protein | Section of DNA
which is
translated into
protein | The monomers
(repeated units)
of proteins | mRNA leaves the
nucleus through
this gap
(opening/pore). | | Intron | Exon | Amino acid | Nuclear pore | | DNA nucleotides
read in groups of
three | The equivalent of
the triplet on the
mRNA. This codes
for an amino acid. | Codons which stop
and start a
polypeptide chain
formation | RNA which
determines the
sequence of a
polypeptide | | Triplet | Codon | Stop-start | mRNA | | Enzyme which transcribes one of the two DNA strands into mRNA. | Nucleic acid which
brings amino acids
to ribosome | This is where the mRNA is read. | Using the information on mRNA to join amino acids | | RNA polymerase | tRNA | rRNA | Translation | | Several ribosomes
moving along a mRNA
at one time to
produce multiple
copies of a
polypeptide chain. | Long string of
joined amino acids
which equates to a
protein | Unit of hereditary. Carries information to make a protein. | The DNA strand which is used to transcribe the mRNA | |---|---|--|--| | Polysome | Polypeptide
chain | Gene | Coding strand | | There may be
more than one
codon for each
amino acid | The enzyme which unwind and untwist the DNA strand during replication | DNA strand made
in one lengthy
section during
replication | DNA strand made in short sections during replication | | Degeneracy | Helicase | Leading strand | Lagging strand | | The name of the
short pieces of
RNA used to
initiate the DNA
sequence | The enzyme which creates a short RNA primer | The enzyme which
joins the short
Okazaki
fragments
together | The name of the short fragments produced on the lagging strand | | RNA primer | RNA polyerase | DNA ligase | Okazaki
fragments | | Direction in which
nucleotides are
added along the
leading strand. | The combination of a base, sugar and a phosphate | Enzyme which relieves the strain on the DNA molecule caused by Helicase unwinding the strands. | Enzyme which
digests the RNA
primer | | 5' to 3' end | Nucleotide | DNA gyrase | DNA
Polymerase I | | Enzyme which extends RNA primer with short lengths of complimentary DNA. | The proteins around which DNA is wound | Two-ringed
nitrogenous bases
(adenine and
guanine) | Single-ringed
nitrogenous bases
(cytosine and
thymine) | |---|--|---|---| | DNA
Polymerase III | Histones | Purines | Pyrimidines | | Part of chromosome which joins with spindle. | Weak chemical
bond between
nitrogenous bases | The two exact
copies of a
chromosome held
by centromere | Chemical bond
linking the DNA
backbone (sugar-
phosphate) | | Centromere | Hydrogen bond | Chromatid | Phosphodiester
bond | | This is the shape
of the DNA
molecule. It is like
a twisted ladder. | A set position of a
gene on the DNA
molecule | Organisms which have a nucleus with a nuclear membrane. | A sequence of nucleotides on the strand of DNA being copied which stop transcription (deactivate transcription) | | Double helix | Gene locus | Eukaryote | Terminator sequence | | The site where the RNA polymerase first attaches itself to the DNA to begin synthesis of the mRNA | Activators which bind to the enhancer | Transcription is activated when a hairpin loop in the DNA brings the transcription factors attached to this section in contact with the transcription factors bound to RNA polymerase at the promoter | Consists of the structural genes, promoter and operator sites | | Promoter | Transcription factors | Enhancer
sequence of DNA | Operon | | Binds to the
repressor altering
its shape | Organisms which
do not have a
nuclear membrane
(bacteria) | Gene which produces the repressor molecule | Molecule which binds to the operator site and suppresses its activity. | |--|--|--|--| | Inducer | Prokaryote | Regulator gene | Repressor | | Set of genes after
the operator which
code for an enzyme
needed in a
metabolic pathway | The potential blocking site. It is here that an active repressor molecule will bind, stopping mRNA synthesis from proceeding | This occurs when genes are switched on by an inducer (e.g. lactose) | When an enzyme produced in excess it is used to bind to the repressor and help it block RNA polymerase | | Structural
genes | Operator | Gene induction | End product inhibition | | The view that nucleic acids determine protein structure is known as the | The entire gene
complement of an
organism | A gene whose protein product interacts with other genes to regulate their level of activity | Change in the
genetic code | | Central Dogma | Genome | Regulator gene | Mutation | | A mutation resulting from the insertion or deletion of a base changing the reading frame | Failure of homologous chromosomes or chromatids to separate during cell division | Variation in
chromosome
number involving
less than a whole
set e.g. Down's
syndrome | An external agent which induces a gene mutation | | Frame shift | Non-disjunction | Aneuploidy | Mutagen | | Two or more
copies of every
chromosomes | Genes which code
for a specific
amino acid
sequence | Genes which control the level of activity of structural genes | An organic
catalyst. Nearly
all are proteins | |--|---|---|--| | Polyploidy | Structural
genes | Regulator genes | Enzymes | | The physical characteristics of an organism | An organism's
hereditary make-
up | A unit of hereditary information, carrying the information for the production of a polypeptide | One of two or
more forms of a
gene at a locus on
a chromosome | | Phenotype | Genotype | Gene | Allele | | When a characteristic in the heterozygous form is a intermediate form | When the heterozygous form stimulates the expression of two alleles | A gene which exists as more than two alleles, but the rules of inheritance are the same | The presence of two or more genes on the same chromosome meaning they wont segregate independently | | Incomplete
dominance | Co dominance | Multiple alleles | Linkage | | Occurs when an allele at one locus is needed for the expression of the allele at another locus | 9 : 3 : 4 ratio | Development of a characteristic requires the presence of at least one dominant allele at each of two loci | 9:7 ratio | | Epistasis | Epistasis/
supplementary | Complementary genes | Complementary genes | | A characteristic that develops if either of the dominant alleles at two loci are present | 15 : 1 ratio | When an allele at one locus is necessary for the expression of another allele at a different locus | Three stages of protein synthesis | |--|---|--|---| | Duplicate genes | Duplicate genes | Supplementary genes | Transcription, RNA processing, translation | | 1 : 1 : 1 : 1 ratio | Four phenotypes from a dihybrid cross but two genes involved are both effecting the same trait. 9:3:3:1 ratio | 2 : 1 ratio | The more genes involved the more phenotype ratios look like a normal distribution curve | | Dihybrid test
cross | Collaboration | Lethal gene | Polygenes | | 3 : 1 ratio | | | | | Monohybrid cross
with dominance | | | | | | | | | | | | | |