| Pattern of evolution;
a large number of
species form to
occupy different
ecological niches. | A result of
geographical
isolation. | Relative proportion of alleles in a population. | Animals won't reproduce due to differences in courtship, etc. | |---|--|--|--| | Adaptive radiation | Allopatric speciation | Allele frequency | Behavioural
isolation | | Evidence for evolution; organisms separated by geography become increasingly different. | Pattern of evolution; one species or group changes its genetic composition in response to a genetic change in another. | Evidence for evolution; homologous structures (related species), analogous structures (unrelated species). | Different species
living in a similar
environment come
to look similar. | | Biogeography | Co-evolution | Comparative
anatomy | Pattern of evolution | | A localised population. | When one extreme is selected for. | Where both extremes are selected for against the middle range. This ultimately produces two new species. | When one species
branches to form
two or more species. | | Deme | Directional selection | Disruptive selection | Divergent
evolution | | Organisms don't interbreed because of niche differences. | Evidence for evolution; geological layers show species increasing different to modern species the deeper (older) you go. | Caused by reproduction between populations. | All the genes in a reproducing population. | | Ecological isolation | Fossil evidence | Gene flow | Gene pool | | Random changes in allele frequencies because of small population size. | Organisms can't reproduce due to physical separation. | Pattern of evolution;
slow changes
between populations
occur as a result of
slightly different
selection pressures. | Structures with common ancestry, now used for differing functions. | |---|---|---|---| | Genetic drift | Geographical isolation | Gradualism | Homologous
structure | | Speciation resulting from polyploidy. | Evidence for evolution; DNA (& : proteins) are more similar, the more similar (& more recently diverged) 2 species are. | An unrepaired
change in DNA - the
origin of all variation. | The best adapted individuals have a greater chance of reproductive success. | | Instant Speciation | Molecular biology | Mutation | Natural selection | | When cells have more
than 2n chromosomes.
Results from mutation
(non-disjunction), can
result in instant
speciation. | Factors that prevent a hybrid persisting as a new species — includes hybrid inviability, hybrid infertility and hybrid breakdown. | Factors that prevent a hybrid from being conceived – includes behaviour, structure, temporal, gamete incompatibility, geographical. | Pattern of evolution;
consists of long
periods of stability,
followed by rapid
changes as a result of
critical selection
pressures. | | Polyploidy | Post-zygotic
Isolation | Pre-zygotic
Isolation | Punctuated equilibrium | | Populations unable
to interbreed. | The environmental factors that favour certain phenotypes. | Formation of a new species. | A group of individuals that will interbreed in nature to produce fertile offspring. | | Reproductive isolation | Selection pressure | Speciation | Species | | Selection for the middle range against the extremes. | Organisms are unable to reproduce due to differences in their genital organs. | Groups that are very different from each other, but can still interbreed. | Due to isolating mechanisms other than geography - happens in the same place (due to a number of niches). | |--|--|--|---| | Stabilising selection | Structural isolation | Subspecies | Sympatric speciation | | Organisms don't reproduce due to differences in timing (active/ breeding at different times). | Structures which have the same job but have different bone make-up. Do not share a common ancestor. | A gradual variation in
the characteristics of
a species or
population over a
geographical range. | The study of how
embryos develop,
looking at which
genes are turned on
and when. | | Temporal isolation | Analogous
structures | Cline | Embryology | | Only found naturally in a certain country or area. | Gradual process by which the present diversity of plants & animals arose from earliest and most primitive organisms. | Random fluctuation
in the frequency of
alleles due to chance
events. | Environmental facture that selects certain phenotypes. | | Endemic | Evolution | Genetic drift | Selective pressure | | Having more than two haploid sets of chromosomes that are derived from the same ancestral species. | Having three or more complete sets of chromosomes derived from different species. | An individual formed by mating between genetically different populations or species. | Comparison of the DNA sequences allows organisms to be grouped and show relativeness. | | Autopolyploid | Allopolyploid | Hybrid | DNA comparison |