Demonstrate understanding of evolutionary processes leading to speciation. Level 3, 4 Credits

This achievement standard involves demonstrating understanding of evolutionary processes leading to speciation.

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of	Demonstrate in-depth	Demonstrate comprehensive
evolutionary processes leading to speciation.	understanding of evolutionary processes leading to speciation.	understanding of evolutionary processes leading to speciation.

Evol	utionary processes involve the following biological ideas:		
0	role of mutation		
0	gene flow		
0	role of natural selection and genetic drift		
0	modes of speciation (sympatric, allopatric)		
0	reproductive isolating mechanisms that contribute to speciation (geographical, temporal, ecological, behavioural, structural barriers, polyploidy)		
0	patterns such as divergence, convergence, adaptive radiation, co-evolution, punctuated equilibrium, and gradualism		
<u>Scie</u>	ntific evidence for evolution, which may include examples from New Zealand's flora and fauna, wil		
be s	be selected from:		
0	fossil evidence		
0	comparative anatomy (homologous and analogous structures)		
0	molecular hiology (proteins and DNA analysis)		

Learning Outcomes:

At the end of this topic I can –

biogeography

- Show how natural selection and genetic drift can lead to evolution. Including the importance of mutations.
 - best suited individuals have greater chance of reproductive success
 - o survival of species is promoted
 - o individuals with more suited / better adapted phenotypes will compete more favourably than others and are more likely to reproduce, passing on their favourable alleles
 - o favourable alleles increase in frequency within the population
- Explain ways in which speciation (process of forming new biological species) occurs
 sympatric (e.g. penguins could undergo speciation in the same place by occupying different niches/habitats)

- o allopatric (e.g. penguins could undergo speciation in different geographical areas)
- o instant speciation (polyploidy)
- Understand and describe how isolating mechanisms that contribute to speciation (pre zygotic, post zygotic and others)
 - o geographical boundaries (e.g. different islands, uplifting causing formation of mountain ranges)
 - o ecological (habitat) (e.g. different, genetic differences to cope with different ecological habitats i.e. temperature & humidity)
 - o temporal (e.g. different breeding time)
 - o behavioural (e.g. different mating rituals)
 - o structural barriers (e.g. incompatibility in anatomy)
 - o polyploidy (e.g. different numbers of chromosomes so even if gametes fuse / pollen fertilises other species the embryo cannot develop to maturity)
 - o post zygotic isolating mechanisms
 - hybrid sterility
 - hybrid inviability
 - hybrid breakdown
- Identify and explain the different patterns of evolution
 - o convergent evolution (where similar selection pressures result in similar adaptations in species from different ancestors)
 - o divergent evolution including adaptive radiation (individuals with slightly different adaptations fill a variety of available niches, leading to adaptive radiation)
 - o co-evolution (species evolving in response to each other, mutualistic relationship)
- Explain the two theories for the rate of evolution
 - o punctuated equilibrium. (long periods of stasis with sudden speciation/periods of evolution leading to genetic change)
 - o gradualism (slow genetic change over a long period of time)

Terms:

Demonstrate understanding involves using biological ideas and/or scientific evidence to describe evolutionary processes leading to speciation.

Demonstrate in-depth understanding involves using biological ideas and/or scientific evidence to explain how or why evolutionary processes lead to speciation.

Demonstrate comprehensive understanding involves linking biological ideas and/or scientific evidence about evolutionary processes leading to speciation. The linking of ideas may involve justifying, relating, evaluating, comparing and contrasting, or analysing the evolutionary processes that lead to speciation.