Achievement Standard Chemistry 91161: Carry out quantitative analysis

In addition to the titration (see other resources on No Brain Too Small), this AS also has a written component with calculations.

Important formula: $\mathrm{n}=\mathrm{m} / \mathrm{M}$ $n=m / M$ (which can be rearranged to $m=n \times M$ where n is the amount of substance (mol)

m is the mass of substance (g) and M is the molar mass of the substance $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$

The portion of the periodic table shown below shows the atomic number and molar mass of some elements. E.g. Na has a molar mass of $23.0 \mathrm{~g} \mathrm{~mol}^{-1}$. This means 1 mol of Na has a mass of 23.0 g . This can be written $\mathrm{M}(\mathrm{Na})=23.0 \mathrm{~g} \mathrm{~mol}^{-1}$ in questions.

1	2			Atomic number		1 \mathbf{H} 1.0	Molar mass/ $\mathrm{g} \mathrm{mol}^{-1}$		
$\begin{array}{\|ll\|} \hline 3 & \\ & \\ & \mathbf{L i} \\ 6.9 \end{array}$	$\begin{array}{\|r} \hline 4 \\ \\ \hline \\ \\ 9 . \end{array}$								
11 Na 23.0	12 Mg 24.3	3	4	5	6	7	8	9	10
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.1 \end{gathered}$	$\begin{array}{\|r\|} \hline 20 \\ \mathrm{Ca} \\ 40.1 \end{array}$	$\begin{array}{\|r} 21 \\ \mathrm{Sc} \\ 45.0 \end{array}$	$\begin{array}{\|r\|} \hline 22 \\ \mathbf{T i} \\ 47.9 \end{array}$	$\begin{array}{\|r} 23 \\ \hline \\ 50.9 \end{array}$	$\begin{array}{\|r} \hline 24 \\ \mathrm{Cr} \\ 52.0 \end{array}$	$\begin{aligned} & 25 \\ & \text { Mn } \\ & 54.9 \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ \mathrm{Fe} \\ 55.9 \end{array}$	$\begin{array}{\|r\|} \hline 27 \\ \text { Co } \\ 58.9 \end{array}$	28 Ni 58.7
37	28	30	10	11	17	12	14	15	16

What is the mass of 1 mol of Mg ? Answer: 24.3 g
What is the mass of 2 mol of Mg ? Answer: $\mathrm{m}=\mathrm{n} \times \mathrm{M}$

$$
\begin{aligned}
& \mathrm{m}=2 \times 24.3=48.6 \mathrm{~g} \\
& \mathrm{~m}=0.75 \times 24.3=18.225 \mathrm{~g} \\
& \mathrm{n}=56.0 / 24.3=2.30 \mathrm{~mol}
\end{aligned}
$$

What is the mass of 0.75 mol of Mg ? Answer: $\mathrm{m}=\mathrm{n} \times \mathrm{M}$
How many mol of Mg are there is 56.0 g of Mg ? Answer: $\mathrm{n}=\mathrm{m} / \mathrm{M}$

\% Composition calculations

Citric acid, formula $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, can be used to soften water which makes it useful in soaps and laundry detergents. It is also the acid found in citrus fruits. Calculate the percentage composition of citric acid.
$\mathrm{M}(\mathrm{C})=12.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} \mathrm{~mol}^{-1}$
First calculate (M) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$

- (M) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}=(12.0 \times 6)+(1.00 \times 8)+(16.0 \times 7)=192 \mathrm{~g} \mathrm{~mol}^{-1}$
- $\% C=\frac{(12.0 \times 6)}{192} \times 100=37.5 \%$

These will add

- $\% \mathrm{H}=\frac{(1.00 \times 8)}{192} \times 100=4.17 \%$
- $\% \mathrm{O}=\frac{(16.0 \times 7)}{192} \times 100=58.3 \%$

up to 100% of course ©

Rhubarb contains acids, one of which is malic acid, formula $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$. Calculate the percentage composition of malic acid.

First calculate (M) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$

- $(M) \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}=(12.0 \times 4)+(1.00 \times 6)+(16.0 \times 5)=134 \mathrm{~g} \mathrm{~mol}^{-1}$

- $\% C=\frac{(12.0 \times 4)}{134} \times 100=35.8 \%$
- $\% H=\frac{(1.00 \times 6)}{134} \times 100=4.48 \%$
- $\% \mathrm{O}=\frac{(16.0 \times 5)}{134} \times 100=59.7 \%$

Empirical formula and the molecular formulae

Empirical formulas give the lowest whole number ratio of the atoms in a compound.
The molecular formula gives the exact composition of one molecule.
Examples:

molecular formula	empirical formula
$\mathrm{C}_{2} \mathrm{H}_{4}$	CH_{2}
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{C}_{2} \mathrm{H}_{5}$

Example 1:

Rhubarb plants contain oxalic acid.
Oxalic acid is 26.7% carbon, 2.22% hydrogen and 71.1% oxygen, and has a molar mass of $90.0 \mathrm{~g} \mathrm{~mol}^{-1}$. Use the following molar masses to calculate both the empirical formula and the molecular formula of oxalic acid: $\mathrm{M}(\mathrm{C})=12.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} \mathrm{~mol}^{-1}$

- Assume that you have 100 g of the compound. Then 100 g of oxalic acid would contain 26.7 g of carbon, 2.22 g of hydrogen and 71.1 g of oxygen

	Carbon	Hydrogen	Oxygen
Mass (g)	26.7	2.22	71.1
Moles (mol) $\mathrm{n}=\mathrm{m} / \mathrm{M}$	$26.7 / 12.0$ $=2.225$	$2.22 / 1.00$ $=2.22$	$71.1 / 16.0$
divide each by the smallest \# of moles	$2.225 / 2.22$ $=1.00$	$2.22 / 2.22$ $=1.00$	$4.44375 / 2.22$ (
Simplest whole number ratio	1	1	$=2.00$

- Ratio is 1:1:2 so empirical formula is CHO_{2}

Oxalic acid has a molar mass of $90.0 \mathrm{~g} \mathrm{~mol}^{-1}$.

- Empirical formula CHO_{2} has a molar mass of $12.0+1.00+(16.0 \times 2)=45.0 \mathrm{~g} \mathrm{~mol}^{-1}$.
- \# of CHO_{2} units is $90.0 / 45.0=2$
- Molecular formula is therefore $2 \times \mathrm{CHO}_{2}$, that is $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$

Example 2:

Tile cleaners contain hydrogen peroxide. Hydrogen peroxide is 94.12% oxygen and 5.88% hydrogen. It has a molar mass of $34.0 \mathrm{~g} \mathrm{~mol}^{-1}$. Use the following molar masses to calculate both the empirical formula and the molecular formula of hydrogen peroxide. $\mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} \mathrm{~mol}^{-1}$

- Assume that you have 100.00 g of the compound. Then 100 g of hydrogen peroxide would contain 94.12 g of oxygen and 5.88 g of hydrogen.

	Hydrogen	Oxygen
Mass (g)	5.88	94.12
Moles (mol)	$5.88 / 1.00$ $=5.88$	$94.12 / 16.0$ $=5.8825$
divide each by the smallest \# of moles	$5.88 / 5.88$ $=1.00$	$5.8825 / 5.88$ $=1.00$
Simplest whole number ratio	1	1

- Ratio is $1: 1$ so empirical formula is HO

Hydrogen peroxide has a molar mass of $34.0 \mathrm{~g} \mathrm{~mol}^{-1}$.

- Empirical formula HO has a mass of $1.00+16.0=17.0 \mathrm{~g} \mathrm{~mol}^{-1}$.
- \# of HO units is $34.0 / 17.0=2$
- Molecular formula is therefore $2 \times \mathrm{HO}$, that is $\mathrm{H}_{2} \mathrm{O}_{2}$

Note: If you end up with a simplest ratio of, say, $1 \mathrm{Fe}: 1.5 \mathrm{O}$, then simply multiply both x 2 to give $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Calculations from equations

Example 1:
Malic acid reacts with sodium hydroxide. The equation for the reaction is:

$$
\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}+2 \mathrm{NaOH} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the maximum mass of sodium malate, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}$, which could be made from 15.0 g of sodium hydroxide. $\mathrm{M}(\mathrm{C})=12.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{Na})=23.0 \mathrm{~g} \mathrm{~mol}^{-1}$

- Write the equation: $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}+2 \mathrm{NaOH} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- Identify the species you are interested in....... calculate the maximum mass of sodium malate, $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}$, which could be made from 15.0 g of sodium hydroxide.
- Calculate the mass of these; 2 mol of NaOH and 1 mol of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}$

$$
\begin{gathered}
\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}+\underset{2 \mathrm{l}}{2 \mathrm{NaOH}} \rightarrow \underset{2 \mathrm{~mol}}{\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{Na}_{2}}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \times(23.0+16.0+1.00) \\
80.0 \mathrm{~g} \\
2 \mathrm{~mol} \\
(12.0 \times 4)+(1.00 \times 4)+(16.0 \times 5)+(23.0 \times 2) \\
178 \mathrm{~g}
\end{gathered}
$$

- By proportion

$$
15.0 \mathrm{~g} \quad \frac{15.0}{80.0} \times 178=33.4 \mathrm{~g} \text { (3 s.f.) }
$$

Example 2:

Citric acid reacts with sodium hydroxide. The equation for the reaction is:

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the mass of sodium citrate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}$, which is formed when 10.0 g of sodium hydroxide reacts with citric acid. $\mathrm{M}(\mathrm{C})=12.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{H})=1.00 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{O})=16.0 \mathrm{~g} \mathrm{~mol}^{-1} \mathrm{M}(\mathrm{Na})=23.0 \mathrm{~g} \mathrm{~mol}^{-1}$

This can be calculated as in example 1. Alternatively you could use the method below.

- Write the equation: $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
- Identify the species you are interested in....... calculate the mass of sodium citrate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}$, which is formed when 10.0 g of sodium hydroxide reacts with citric acid

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+\underset{3 \mathrm{NaOH}}{3 \mathrm{~mol}} \rightarrow \underset{6}{3 \mathrm{C}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}}+3 \mathrm{H}_{2} \mathrm{O} \\
\hline \mathrm{~mol}
\end{gathered}
$$

- $\mathrm{M}(\mathrm{NaOH})=23.0+16.0+1.00=40 \mathrm{~g} \mathrm{~mol}^{-1}$.
- $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}\right)=(12.0 \times 6)+(1.00 \times 5)+(16.0 \times 7)+(23.0 \times 3)=25840 \mathrm{~g} \mathrm{~mol}^{-1}$.
- $\mathrm{n}(\mathrm{NaOH})=\mathrm{m} / \mathrm{M}=10 / 40=0.250 \mathrm{~mol}$
- $n(\mathrm{NaOH}): \mathrm{n}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}\right)=3: 1$ (This means 3 mol of NaOH react to form 1 mol of sodium citrate).
- $n\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}\right)=0.250 / 3=0.0833 \mathrm{~mol}$
- $m=n M \quad m\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}\right)=0.0833 \times 258=21.5 \mathrm{~g}$

Significant figures \& correct units

Consistent use of significant figures and correct units are needed for excellence.

The questions will invariably be given to you with data given to 3 s.f. e.g. 24.0 g of Mg rather than 24 g (2 s.f.) or 24.00 g (4 s.f.)

Your final answer should therefore also be given to 3 s.f.
If you are given two pieces of data in a question, one to 3 s.f. and the other to 2 s.f. then the final answer should be given to 2 s.f. However NCEA Chemistry has a long history of obsession with 3 s.f. - just ask your Chemistry teacher!

Correct units are:

- Amount (n) - mol
- Mass (m)-g
- Molar mass (M) $-\mathrm{g} \mathrm{mol}^{-1}$
- Concentration (C) - $\mathrm{mol} \mathrm{L}^{-1}$
- Volume (V) - mL and L
$C \& V$ will be needed in titration calculations when using the formula $n=C V$ and $C=n / V$.

