AS91165

Demonstrate understanding of the properties of selected organic compounds Level 2 4 Credits

This achievement standard involves demonstrating understanding of the properties of selected organic compounds.

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of	Demonstrate in-depth	Demonstrate comprehensive
the properties of selected	understanding of the properties	understanding of the properties of
organic compounds.	of selected organic compounds.	selected organic compounds.

This AS involves selected organic compounds containing no more than eight carbons in the longest chain.

- naming of organic molecules according to IUPAC convention.
- **└** formulae
 - o empirical stoichiometric proportions of atoms only e.g. CH₂O
 - o molecular formula of the actual molecule e.g. C₃H₆O₃
 - o structural formulae shows how atoms are connected. It may be drawn in different ways
 - condensed

expanded

- selected organic compounds <u>homologous series</u> their functional groups and reactions
- alkanes
 - halogenation substitution reactions of alkanes with halogens (limited to monosubstitution)
 - o alkenes
 - addition reactions of alkenes with
 - H₂/Pt hydrogenation (or H₂/Ni)
 - Cl₂, Br₂ halogenation
 - H₂O/H⁺ (conc. H₂SO₄/H₂O) hydration (including identification of major and minor products on addition to asymmetric alkenes - Markovnikov's Rule)
 - hydrogen halides e.g. HCl & HBr hydrohalogenation (including identification of major and minor products on addition to asymmetric alkenes - Markovnikov's Rule)
 - polymerisation
 - oxidation of alkenes with MnO₄⁻ and H⁺/ MnO₄⁻
 - alkynes

haloalkanes 0

- classification of haloalkanes as primary, secondary or tertiary
- substitution reactions of haloalkanes with
 - ammonia
 - aqueous potassium hydroxide
- elimination of hydrogen halides from haloalkanes with alcoholic potassium hydroxide (including identification of major and minor products for asymmetric reactants - Saytzeff's rule)

primary amines 0

acid-base reactions of amines

0 alcohols

- classification of alcohols as primary, secondary or tertiary
- substitution reactions of alcohols with hydrogen halides, PCl₃, PCl₅, SOCl₂
- oxidation of primary alcohols to form carboxylic acids with MnO₄-/H⁺, heat or with Cr₂O₇²-/H⁺, heat
- elimination of water from alcohols (including identification of major and minor products for asymmetric reactants - Saytzeff's rule)

carboxylic acids 0

•	acid-base	reactions	of o	carbox	/lic	acids

indic	cators		
com	pletion of flow charts/reaction schemes for simple organic conversions of the above		
iden	tification and explanation of types of reactions; addition, elimination, substitution, oxidation		
isomerism			
0	constitutional (structural - same molecular formula – type and number of atoms - but different		

identification of "unlabelled samples" of the above through reaction with common reagents and

- connectivity)
 - different carbon skeleton
 - different position of functional group
 - different functional group e.g. cycloalkane & alkene
- **geometric** (cis and trans) isomers alkenes only 0
 - rotation of the atoms about the axis of the carbon to carbon double bond is restricted
 - requirement to have two different atoms/groups attached to each end of the double bond
- physical properties of the selected organic compounds
 - solubility in water
 - depending on functional group
 - depending on the size of the molecule
 - melting and boiling points 0