

AS 91166 Demonstrate understanding of chemical reactivity Level 2 4 Credits

This achievement standard involves demonstrating understanding of chemical reactivity.

Achievement	Achievement with Merit	Achievement with Excellence	
Demonstrate understanding of	Demonstrate in-depth	Demonstrate comprehensive	
chemical reactivity.	understanding of chemical	understanding of chemical	
	reactivity.	reactivity.	

Chemical reactivity is limited to rates of reaction and equilibrium principles.

Rate	es of reaction:		
	factors affecting rates of reaction – restricted to changes in o concentration o temperature o surface area o presence of a catalyst		
	use of collision theory to explain the factors (includes activation energy)		
Equi	ilibrium principles:		
	the dynamic nature of equilibrium		
	the effect of changes on equilibrium systems		
	o temperature		
	o concentration		
	o pressure		
	o addition of a catalyst	14	
	the significance of the equilibrium constant (Kc) for homogeneous systems o this may involve calculations		Bleach Soapy Water
	the nature of acids and bases in terms of proton transfer		Ammonia Solutio
	o Brønsted-Lowry definitions / theory	10	Milk of Magnesia
	o acid-base conjugate pairs	9	Baking Soda
	properties of aqueous solutions of strong and weak acids and bases including	ng 8 -	Sea Water Distilled Water
	ionic species. The properties are restricted to o electrical conductivity	6 —	Urine
	 electrical conductivity rate of reaction 	5	Black Coffee
	o pH	4	Tomato Juice
	calculations involving K_w and pH (restricted to strong acids and bases).		Orange Juice
			Lemon Juice
	o pH = $-\log [H_3O^+]$ o $[H_3O^+] = 10^{-pH}$	1 —	Gastric Acid
	o $K_W = [H_3O^+][OH^-] = 1x10^{-14}$ (at 25°C)	0	

The Resource booklet provided will include the following:

$$K_W = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at } 25^{\circ}C$$

$$pH = -log [H3O+]$$

$$[H_3O^+] = 10^{-pH}$$