Calculations in Chemistry

the equilibrium constant (K_c) for homogeneous systems; This may involve calculations. (If $K_c \wedge equilibrium position shifts to right, favours the products as$							
 the equilibrium constant (K_c) for homogeneous systems; This may involve calculations (If K_c ↑ eqm position shifts to right, favours the products as bigger [products] ÷ smaller [reactants] = bigger value of K_c. calculations involving Kw and pH (restricted to strong acids and bases). 							
<u>Useful formulae you need to memorise</u> pH = - log [H ₃ O ⁺] [H ₃ O ⁺] = 10 ^{-pH} or inv log (-pH) K _w = 1 × 10 ⁻¹⁴ = [H ₃ O ⁺][OH ⁻]							
n = m/M or m = nM (n is amount, in mol, m is mass in g, & M is molar mass, in g mol ⁻¹ n = cV (n is amount, in mol, c is conc ⁿ in mol L ⁻¹ and V is volume in L							
$\Delta H = \Sigma \Delta H(bonds \ broken) + \Sigma \Delta H(bonds \ made)$ - This basically means that you add up all the energies of the broken bonds (+);							

remember that bond breaking is endothermic (+ Δ H) and bond making is exothermic (- Δ H) E.g. H-H \rightarrow H + H; +436 kJ while H + H \rightarrow H₂; -436 kJ

Units commonly used

- Energy: J or kJ or J mol⁻¹ or kJ mol⁻¹ For enthalpy changes the units of kJ mol⁻¹ refer to **one mole of the equation as written** rather than with respect to any particular component of the equation.
- Amount of substance: mol (1 mole = 6×10^{23} particles; atoms, molecules, or ions etc.).
- Concentration: mol L⁻¹; [.....] square brackets mean concentration of
- Mass of substance: g or kg
- pH: has NO units
- K_c: has NO units (@ Level 2)

K No Brain Too Small ● CHEMISTRY 💥

	91164 Sampl		calculatio	ns	91166	
The complete combustion of propane can be represented by the following equation $CH_{3}CH_{2}CH_{3} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ or we could redraw it to represent the bonds present: $\begin{array}{c} H & H & H \\ H - C & -C & -C & -H \\ H & H & H \end{array} + 50 = 0 \longrightarrow 30 = C = 0 + 4H - 0 - H$			Determine the $[H_3O^+]$, $[OH^-]$ and pH in each of the following solutions. (a) 0.00112 mol L ⁻¹ HCl solution. (b) 3.68×10^{-2} mol L ⁻¹ NaOH solution. 2 values don't need calculating at all HCl is a strong acid, reacts completely with water; HCl + $H_2O \rightarrow H_3O^+ + Cl^-$ so $[H_3O^+] = [HCl]$ NaOH is a strong base, dissolves completely in water; NaOH + aq \rightarrow Na ⁺ + OH ⁻ so $[OH^-] = [NaOH]$			
BondAverage bondtypeenthalpykJ mol ⁻¹ C-H413	Break 2x C-C 2x 347 - 8x C-H 8x 413 - 5x O=O 5x 498	<u>Make</u> 6x C=0 6x -498 8x O-H 8x -464 = -8542 kJ	(a) (b)	[H ₃ O ⁺] 0.00112	[OH ⁻] 3.68 × 10 ⁻²	рН
C-C 347 O=O 498 C=O 805 O-H 464	$= 6488 \text{ kJ}$ $\Delta H = 6488 + - 8542 = -2054 \text{ kJ}$ Remember "make" is exothermic so =		(a)	[H ₃ O ⁺] 0.00112	$[OH^{-}]$ [OH^{-}] = 10 ⁻¹⁴ /[H ₃ O ⁺] = 10 ⁻¹⁴ / 0.00112 = 8.93 x 10 ⁻¹²	pH pH = -log [H ₃ O ⁺] pH = -log 0.00112 = 2.95
Calculate the amount of energy released when 25.0 grams of C ₄ H ₁₀ (I) is burned in oxygen using the equation provided. Method 1 $2C_4H_{10}(I) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g); \Delta H = -5315 \text{ kJ}$			$\begin{bmatrix} (b) & [H_3O^+] = 10^{-14}/[OH^-] \\ [H_3O^+] = 10^{-14}/3.68 \times 10^{-2} \\ = 2.72 \times 10^{13} \end{bmatrix} \xrightarrow{3.68 \times 10^{-2}} 3.68 \times 10^{-2} \\ Do a quick reality check yes an acid with pH of 2.95 and a base with pH of 12.6 sounds fine! \textcircled{C}$			
2 moles 116* g 25g $M(C_4H_{10}) = (4 \times 12.0) + (10 \times 1.00)$ $= 58.0 \text{ g mol}^{-1}.$ So 2 mol has a mass of 116 g 1145.5 kJ of heat would be released.		Equilibrium constant (Kc) for homogeneous systems may involve calculations. e.g. For the reaction: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $K_c = \frac{[HI]^2}{[H_2][I_2]}$				
Method 2 $2C_4H_{10}(I) + 13O_2(g) \rightarrow 8CO_2(g) + 10H_2O(g); \Delta H = -5315 kJ$ $M(C_4H_{10}) = 58.0 \text{ g mol}^{-1} n(C_4H_{10}) = m/M = 25.0/58.0 = 0.431 \text{ mol}$ If combustion of 2 mol of C_4H_{10} releases 5315 kJ of energy, then the combustion of 0.431 mol of C_4H_{10} releases (0.431/2) x 5315 = 1145.5 kJ (calculated keeping all numbers in calculator and rounding only final answer)			A mixture of hydrogen and iodine was heated in a sealed flask at 491°C and, at equilibrium, the concentration of hydrogen was 2.50 x 10 ⁻² mol L ⁻¹ , iodine was 2.50 x 10 ⁻² mol L ⁻¹ , and hydrogen iodide was 1.71 x 10 ⁻¹ mol L ⁻¹ . Calculate K _c . $K_{c} = \frac{(1.71 \times 10^{-1})^{2}}{(2.50 \times 10^{-2}) \times (2.50 \times 10^{-2})} = 46.8 \text{ (no units)}$			