AS 91391 Demonstrate understanding of the properties of organic compounds

Level 3, Credits 5

This achievement standard involves demonstrating understanding of the properties of organic compounds.

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of the	Demonstrate in-depth	Demonstrate comprehensive
properties of organic compounds.	understanding of the properties of	understanding of the properties of
	organic compounds.	organic compounds.

Orgai	nic co	mpounds are limit	ed to	those containin	g one or m	nore	of the following fund	ctional gr	oups:
	alker	ie		alcohol	[carboxylic acid		acyl chloride
	haloa	alkane		aldehyde	[ester (including		amide
	amin	e		ketone			triglycerides)		
Nami	ng usi	ing IUPAC convent	ions						
	no more than eight carbons in the longest chain								
	syste	matic naming of a	mines	is restricted to	primary aı	mine	S		
Struc	ture								
	funct	ional groups							
	isom	erism							
	0	constitutional iso formula)	mers	those that have	e the same	· mol	ecular formula but a	a differen	t structural
	0	stereoisomers / e	nantio	omers					

Structures may be drawn – e.g. 2-hydroxypropanoic acid / lactic acid

All atoms and bonds	Condensed str	Stereochemistry	
shown	Bonds to hydrogen not	Structure reduced to one	(3D)
	shown OR only bonds	line	
	to substituents shown		
H H H O H O - H	CH ₃ CHC OH OH OR CH ₃ CHCOOH OH	СН₃СН(ОН)СООН	H HO CO-OH

Reac	tivity of organic compounds:
	substitution reactions using the following reagents: (Substitution reactions include esterification, condensation, hydrolysis, and polymerisation.) o concentrated HCl and/or HBr o SOCl ₂ o NaOH or KOH (in aqueous solution) o concentrated NH ₃ o primary amines o primary alcohols/H ⁺ o hydrolysis: acid hydrolysis: H ₂ O/H ⁺ alkaline hydrolysis:H ₂ O/OH ⁻
	oxidation reactions using the following reagents: o MnO ₄ ⁻ /H ⁺ & heat, Cr ₂ O ₇ ²⁻ /H ⁺ & heat o Tollens' reagent (silver mirror test): Ag ⁺ /NH ₃ warm o Fehling's and Benedict's solution: Cu ²⁺ , warm
	reduction of aldehydes and ketones with NaBH ₄
	elimination reactions using the following reagents: o NaOH or KOH in alcohol (includes major and minor products from asymmetric haloalkanes) o concentrated H ₂ SO ₄ (includes major and minor products from asymmetric alcohols): dehydration
	polymerisation reactions involving formation of : o polyesters o polyamides including proteins (names of amino acids not needed)
	addition reactions of alkenes (used for the identification of the products of elimination reactions).
Physi	ical properties of organic compounds limited to:
	solubility — melting points and boiling points — rotation of plane-points — polarised light

Terms:

Demonstrate understanding involves naming using IUPAC conventions (no more than eight carbons in the longest chain) and/or drawing structural formulae of organic compounds and giving an account of their physical properties and/or reactivity. This requires the use of chemistry vocabulary, symbols, and conventions.

Demonstrate in-depth understanding involves making and explaining links between structure, functional groups, physical properties, and reactivity of organic compounds. This requires explanations that use chemistry vocabulary, symbols, and conventions.

Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating or comparing and contrasting the links between the structure, functional groups, physical properties and/or reactivity of organic compounds. This requires the consistent use of chemistry vocabulary, symbols, and conventions.

Knowledge of principles of organic chemistry covered in AS 91165 will be assumed