DC Circuits

Definitions

Electricity carries energy which is transformed into another type of energy. Power is the rate at which the energy is transformed. In a **series** circuit there is only one path for the current.

In a **parallel** circuit there is more than one path for the current to follow.

A complex circuit has elements of both series and parallel circuits. In any circuit, individual components still obey ohms law.

Terms

Ammeter: Device for measuring current (with a very small resistance so it does not affect the circuit when placed in series).

Direct current: An electrical current that always moves in one direction. Electric circuit: Consists of a voltage source that maintains an electrical potential, a continuous conducting path for a current to follow, and a device where work is done by the electrical potential.

Electrical conductors: Materials that have electrons that are free to move throughout the material; for example, metals.

Electrical insulators: Materials that obstruct the flow of electric current. **Resistance:** The property of opposing or reducing electric current. Ohm's Law: Resistance is equal to voltage divided by current (R=V/I).

Power: The rate of doing work.

Voltage: The electric potential difference across a resistor.

Voltmeter: Device for measuring voltage (with a very large resistance so it does not affect the circuit when placed in parallel).

Equations

	Voltage	V	V
V = IR	Current	1	А
	Resistance	R	Ω
P = IV	Power	Р	W (J s ⁻¹)
	Current	1	А
	Voltage	V	V
$P = \frac{\Delta E}{t}$	Power	Р	W (J s ⁻¹)
	Change in Energy	ΔE	J
	Time	t	S
$R_{\rm T}=R_{\rm 1}+R_{\rm 2}+\ldots$	Resistance	R	Ω
$\frac{1}{R_{\rm T}} = \frac{1}{R_{\rm I}} + \frac{1}{R_{\rm 2}} + \dots$	Resistance	R	Ω

Voltage Current Resistance Power Current	V I R P	V Α Ω W (J s ⁻¹)	 CIRCUITS (2018;3) Use the circuit diagram to answer the questions below. (a) Show that the total resistance of the circuit is approximately 10 Ω. (b) Calculate the voltages across 		
Voltage Power Change in Energy Time Resistance Resistance	V P ΔE t R	V W (J s ⁻¹) J S Ω	 bulb 1 and bulb 2. R=7.00 Ω (c) Bulbs 2 and 3 are not the same brightness. Discuss which bulb is brighter, and why. (d) An ammeter (with negligible resistance) is added to the previous circuit as shown. Discuss the effect adding the ammeter has on the 		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		wire). $= R_1 + R_2 + R_2$	current, the voltage, and hence the brightness of each bulb. (a) (b) $R_{\rm T} = 7.00 + \left(\frac{1}{4.80} + \frac{1}{7.00}\right)^{-1} = 9.85 \Omega$ $I = \frac{V}{R} = \frac{12}{9.85} = 1.22 A$		
	aviour by	y distinguishi	$V_{bulb2} = V_{supply} - V_{bulb1}$ $V_{w_{0}} = 12 - 8.53 = 3.47 \text{ V}$		
	Current Resistance Power Current Voltage Power Change in Energy Time Resistance Resistance nal current, I, is drawn the ti is the electrons that in to using this formula: up using this formula:	Current I Resistance R Power P Current I Voltage V Power P Change in Energy ΔE Time t Resistance R Resistance R nal current, I, is drawn the oppoint is the electrons that move in a polytopy this formula: up using this formula: R_T up using this formula: $\frac{1}{R_T}$ Iways work out it's behaviour broken in the specific to the speci	Current I A Resistance R Ω Power P W (J s ⁻¹) Current I A Voltage V V Power P W (J s ⁻¹) Change in Energy ΔE J Time t s Resistance R Ω Resistance R Ω nal current, I, is drawn the opposite way to the ti is the electrons that move in a wire). $P_T = R_1 + R_2 +$ Dusing this formula: $R_T = R_1 + R_2 +$ $I_T = I_T + I_T$		

Ω), increasing the total current (I = V/R = 12/2.85 = 4.2 A) from 1.22 A. Voltage across bulbs 2 and 3 is now higher (12 V from 3.74 V). More current passes through bulbs 2 and 3, and a larger voltage is across bulbs 2 and 3, causing their respective brightness's to

increase.

