Capacitors

Definitions	Equations				Questions	
Charging and discharging						
Capacitors can charge up (gain charge) and discharge (lose charge). This	1	Epergy	F		Casey sets up a battery, a switch, and a 3.00Ω light bulb in series.	
charging and discharging is non-intear.	$E = \frac{1}{2}OV$	Chargo	0	1	Capacitor Voltage during Charging	
Discharging a capacitor	$L = \frac{1}{2}Q'$	Voltage	V V	V	to be 6.02 V and the internal	
difference (/)		Time constant	т	s	resistance of the battery is 50	
circuit when V drops to 37% of	$\tau = \kappa C$	Resistance	R	Ω	approximately 0.09 Ω. Casey	
V _o . The bigger the value of RC		Capacitance	C	F	with the battery and closes the	
the slower the rate at which the		Charge	Q	C	switch. Casey measures the $\frac{\hat{\sigma}_{zo}}{z_{zo}}$	
Potential	O = CV	Capacitance	C	F	voltage across the capacitor as it	
Charging a capacitor	2 0,	Voltage	V	V	$\begin{array}{c} 0.0 & 0.0 \\ 0.0 & 0.5 & 1.0 & 1.5 & 2.0 & 2.5 & 3.0 & 3.5 & 4.0 & 4.5 & 5.0 \\ \hline & & & & & & & & \\ 1 & & & & & & & & \\ \end{array}$	
T is the time constant for the					(c) Using information from the graph, determine the capacitance of the capacitor.	
the circuit when V reaches					(d) Casey discharges the same iter removes the light hulb and begins to	
63% of V _o .					charge the capacitor again. Casey predicts that, by removing the light	
For both charging and					bulb, less energy will be converted to light and heat, and so the	
discharging, the current looks					capacitor will charge more quickly, and have more stored energy once	
like this:					Casey's prediction. You should discuss, with explanations:	
RC 2RC 3RC Time (t)					 whether the capacitor will charge more quickly than before 	
					 whether less energy will be converted to light and heat during the charging process without the light bulb. 	
In all cases one time constant is 63% change					 whether more energy will be stored in the fully charged capacitor. 	
Terms	Tips Answers					
	• A competencie general ed to be fully about ad (disabout ad often E				(c) Voltage after 1 τ= 0.63 x V _{max} = 0.63 x 6.02 V = 3.79 V	
	• A capacitor is regarded to be fully charged/discharged after 5 x 4.			From graph: (time, 3.79 V) $\tau = 1.0 \times 10^{-5}$ s		
				$\tau = R \times C \text{ so } 1.0 \times 10^{-5} \text{ s} = 3.09 \Omega \times C \text{ so } C = 3.24 \times 10^{-6} \text{ F}$		
					(d) The capacitor will charge more quickly because the circuit has less	
					resistance and $\tau = RC$, so current is higher, delivering charge to the	
					light, but) more energy would be converted to heat passing	
					through the (internal) resistance of the battery and coil since	
					current is now higher. So the same amount of energy will be	
					fully charged capacitor will store the same amount of energy as	
					before. Energy stored is $E = \frac{1}{2} CV^2$ or $E = \frac{1}{2} QV$ and none of these	
					values have changed.	