Level 3 Physics: Demonstrate understanding of electrical systems - AC Electricity - Answers

Question	Evidence	Achievement	Merit	Excellence
2022(1) (a)	$\begin{aligned} & X_{c}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 50 \times 54.0 \times 10^{-6}} \\ & =58.946 \Omega \end{aligned}$	Correct formula and substitution.		
(b)	$\begin{aligned} & Z=\sqrt{R^{2}+X_{c}^{2}} \\ & =\sqrt{36.0^{2}+58.9^{2}}=69.1 \Omega \\ & \text { Circuit current }=\frac{V_{s}}{Z}=\frac{25.0}{69.1}=0.362 \mathrm{~A} \end{aligned}$	Correct answer for impedance. Correct current with incorrect impedance.	Correct answer for circuit current.	
(c)	Accept either an impedance phasor diagram or a voltage phasor diagram. Current is in phase with resistor voltage: $\theta=\tan ^{-1}\left(\frac{58.9}{36.0}\right)=58.6^{\circ}$ Current leads supply voltage by 58.6 .	Correct phasor diagram. OR Recognition that the circuit current is in phase with the resistor voltage. OR Correct value for phase difference OR States that current leads supply voltage.	Correct value for phase difference as an angle. AND States that current leads supply voltage.	

(d)	Resonance is when the current is at its maximum. Current is a maximum when impedance is minimum. This happens when $X_{\mathrm{C}}=X_{\mathrm{L}}$ and $Z=R$ and $V_{\mathrm{S}}=V_{\mathrm{R}}$. So an inductor whose reactance is the same as that of the capacitor should be added to the circuit in order to bring this circuit to resonance.	ONE condition for resonance.	ONE error in answer.	Correct answer.
2021(1) (a)	When current is maximum. OR When inductor reactance is equal to capacitor reactance. OR Impedance is a minimum.	ONE of: - $X_{L}=X_{C}$ - $V_{L}=V_{C}$ - $V_{S}=V_{R}$ - $Z=R$ - Z minimum - I maximum		
(b)	At resonance, $X_{\mathrm{L}}=X_{\mathrm{C}}$ $\begin{aligned} & X_{\mathrm{C}}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 210 \times 1.00 \times 10^{-4}}=7.58 \Omega \\ & 7.58=2 \pi f L \\ & L=\frac{7.58}{2 \pi \times 210}=5.74 \times 10^{-3} \mathrm{H} \end{aligned}$	Show calculation of reactance of capacitor. OR Calculated inductance of inductor without calculating reactance of capacitor.	Correct value of inductance after showing value of capacitor reactance.	

(c)(i) (ii)	Inserting the iron rods into the core, increases the inductance of the inductor. So, the reactance of the inductor will increase as inductance is directly proportional to reactance. The reactance of the capacitor remains the same. Hence the circuit will no longer be at resonance since $X \mathrm{~L}$ is no longer equal to $X C$. Since the impedance depends on the vector sum on $X L$ and $X C$, the circuit impedance will increase ($Z=\mathrm{V} / \mathrm{I}$) Hence, current will decrease, causing the lamp to glow less brightly.	ONE correct idea or statement: Inductance increases. - Circuit will no longer be at resonance. - Impedance will increase. - Lamp will no longer be at maximum brightness.	TWO correct statements with reasoning: - Inductance increases, hence, reactance of inductor increases, as inductance is directly proportional to reactance. - Hence, the circuit will no longer be at resonance, since $X L$ is no longer equal to $X C$. - Since the impedance depends on the vector sum on $X \mathrm{~L}$ and $X \mathrm{C}$, the circuit, impedance will increase ($Z=V / I$) causing current to decrease and lamp to glow less brightly.	Inductance increases, hence reactance of inductor increases, as inductance is directly proportional to reactance. AND Reactance of capacitor remains the same (or the frequency has not changed). AND Hence, the circuit will no longer be at resonance, since $X L$ is no longer equal to $X C$. AND Since the impedance depends on the vector sum on XL and XC , the circuit impedance will increase ($Z=\mathrm{V} / \mathrm{I}$), causing current to decrease and lamp to glow less brightly.
(d)	$V_{\mathrm{T}}=12.0 \sin 17.0=3.51 \mathrm{~V}$ Supply voltage leads circuit current.	- Correct vector diagram with V_{s} leading current or voltage across resistor and V_{L} greater than V_{c}. - Evident in diagram or statement that supply voltage leads circuit current. - 3.51V.	$3.51 \mathrm{~V}$ AND Supply voltage leads circuit current.	
$2020(1)$ (a)	$V_{\text {palk }}=\sqrt{2} \times 65.0=91.9 \mathrm{~V}$	(Please note the NZQA Assessment Schedule puts the answer to 1(b) here NB2S)	(Please note the NZQA Assessment Schedule puts the answer to 1(b) here - NB2S)	

(b)		Vector diagram labelled correctly. $Z=183 \Omega$	Correct vector diagram. AND $Z=183 \Omega$	
(c)	$\begin{aligned} & X_{\mathrm{T}}=150 \tan 35=105 \Omega \\ & X_{\mathrm{L}}=2 \pi f L=119.4 \Omega \\ & X_{\mathrm{c}}=119.4-105=14.4 \Omega \\ & C=\frac{1}{2 \pi f X_{\mathrm{c}}}=\frac{1}{2 \pi \times 50 \times 14.4} \\ & =2.21 \times 10^{-4} \mathrm{~F} \end{aligned}$	$\begin{aligned} & X=105 \Omega \\ & X_{\mathrm{L}}=119 \Omega \\ & C=2.67 \times 10^{-5} \end{aligned}$	$x_{C}=14.4 \Omega$ Correct C using incorrect X_{C} $C=1.42 \times 10^{-5}$	$\mathrm{C}=2.21 \times 10^{-4} \mathrm{~F}$
(d)	At resonance, $X_{C}=X_{L}$ Since in the above circuit, the reactance of the inductor is greater than the reactance of the capacitor, the frequency of the supply will have to be reduced so as to reduce inductor reactance and increase capacitor reactance. This is because the reactance of the capacitor is inversely proportional to frequency, whereas the reactance of the inductor is directly proportional to frequency.	At resonance $X_{L}=X_{C}$ f must decrease X_{L} decreases X_{c} increases.	- f must decrease because $X_{L}>X_{C}$ and for resonance $X_{L}=X_{C}$ - f decreases, $\mathrm{X}_{\llcorner }$decreases, X_{C} increases - $f_{0}=17.4 \mathrm{~Hz}, \mathrm{f}$ must decrease - Correct explanation or calculation for incorrect answer from 1c (i.e. consequential error).	
2019(1) (c)	Alternating current in the reader induces a changing magnetic field in the payment machine coil. When the coil in the card is near enough the changing magnetic field of the payment machine coil creates a change flux inside the card coil, which then induces a voltage in the coil.	- Changing current / voltage in payment machine coil produces a changing magnetic field / flux - Change in flux in card induces voltage	- Full response Do NOT accept induced current induces a voltage.	

(d)	Resonance under the condition ($X_{L}=X_{C}$) $\begin{aligned} & X_{\mathrm{L}}=\frac{1}{2 \pi f C} \\ & 427 \Omega=\frac{1}{2 \pi \times 13.6 \times 10^{6} \times C} \\ & C=2.74 \times 10^{-11} \mathrm{~F} \end{aligned}$	$\begin{aligned} & X_{L}=X_{C} \\ & X_{C}=427 \Omega \\ & C=2.74 \times 10^{-11} \mathrm{~F} \end{aligned}$	$x_{L}=x_{c}$ AND $\mathrm{C}=2.74 \times 10^{-11} \mathrm{~F}$
2018(3) (b)	$\begin{aligned} & I_{\text {lamp }}=\frac{V_{\text {lange }}}{R_{\text {lamp }}} \\ & =\frac{4.64 \mathrm{~V}}{5.00 \Omega}=0.928 \mathrm{~A} \\ & X_{\mathrm{L}}=\frac{V_{\mathrm{L}}}{I}=\frac{11.1 \mathrm{~V}}{0.928 \mathrm{~A}} \\ & =11.96 \Omega \\ & X_{\mathrm{L}}=2 \pi f L \\ & 11.96 \Omega=2 \pi \times 50 \mathrm{~Hz} \times L \\ & L=0.0380698 \mathrm{H}=0.0381 \mathrm{H} \end{aligned}$	$\begin{aligned} & X_{\mathrm{L}}=12.0 \Omega \\ & I=0.928 \mathrm{~A} \\ & I_{\max }=1.31 \mathrm{~A} \\ & \theta=67.3^{\circ} \end{aligned}$	$L=0.0381 \mathrm{H}$ with correct working shown. (SHOW question)
(c)	Vector Diagram $\begin{aligned} & X_{\mathrm{c}}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 400 \mathrm{~Hz} \times 9.45 \times 10^{-7} \mathrm{~F}} \\ & =421.0448 \Omega \\ & X_{\mathrm{L}}=2 \pi f L=2 \pi \times 400 \mathrm{H} \times 0.0381 \mathrm{H} \\ & =95.72853 \Omega \\ & Z^{2}=X_{\text {toeal }}{ }^{2}+R^{2} \\ & Z^{2}=(421.0448 \Omega-95.72853 \Omega)^{2}+(5.00 \Omega)^{2} \\ & Z=325 \Omega \end{aligned}$	$\begin{aligned} & X_{\text {total }}=325 \Omega\left(\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}\right) \\ & \mathrm{X}_{\mathrm{L}}=96 \Omega \\ & \mathrm{X}_{\mathrm{C}}=421 \Omega \\ & \mathrm{Z}=3368 \Omega \end{aligned}$	$Z=325 \Omega$ with correct working shown.

(c)	The capacitance will increase because the dielectric constant will increase. Hence the reactance of the capacitor will decrease. $X_{c}=\frac{1}{2 \pi f C}$	Effect on capacitance or reactance of the circuit.	Links to the effect on circuit current.	
(d)	$\begin{aligned} & f=\frac{1}{2 \pi \sqrt{L C}} \\ & X_{\mathrm{L}}=2 \pi f L \Rightarrow L=\frac{X_{\mathrm{L}}}{2 \pi f} \Rightarrow L=\frac{35.7}{2 \pi \times 150}=0.03762 \mathrm{H} \\ & X_{\mathrm{C}}=\frac{1}{2 \pi f C} \Rightarrow C=\frac{1}{2 \pi \times 150 \times 23.5} \Rightarrow C=4.485 \times 10^{-5} \mathrm{~F} \\ & f=\frac{1}{2 \pi \sqrt{0.03787 \times 4.515 \times 10^{-5}} \Rightarrow f=122 \mathrm{~Hz}} \end{aligned}$ At resonance, the reactance of the inductor is equal to the reactance of the capacitor, and they are of opposite phase, cancelling each other. Hence the impedance of the circuit is a minimum and is equal to the resistance of the resistor. Hence the size of the circuit current at resonance is a maximum as current is inversely proportional to resistance.	$\begin{aligned} & L=0.0376 \mathrm{H} \\ & C=4.485 \times 10^{-5} \mathrm{~F} \end{aligned}$ $X_{C} \& X L$ cancel out Z is minimum $Z=R$	$f=122 \mathrm{~Hz}$ Correct explanation	Correct answer for calculation and explanation.
2016(3) (a)	$\begin{aligned} & V_{\text {paak }}=V_{\mathrm{ms}} \times \sqrt{2} \\ & V_{\text {peak }}=6.00 \times \sqrt{2}=8.49 \mathrm{~V} \end{aligned}$	Correct answer.		
(b)	Iron in the core will increase the coil's reactance. Impedance = reactance + resistance. Increasing the reactance causes the impedance to increase. $V=I Z \quad \text { so } \quad I=\frac{V}{Z}$ This causes the current to decrease (V is constant).	XL/L / Z increases.	XL / L and Z increases.	

(c)	$\begin{aligned} & X_{\mathrm{L}}=\omega L \quad \omega=2 \pi f \\ & X_{\mathrm{L}}=2 \pi f L \\ & X_{\mathrm{L}}=2 \pi \times 1000 \times 3.18 \times 10^{-3} \\ & X_{\mathrm{L}}=20.0 \Omega \end{aligned}$ Resistance $=15.0 \Omega$ Reactance $=20.0 \Omega$ Impedance = $\begin{aligned} & Z=\sqrt{R^{2}+X^{2}} \\ & Z=\sqrt{15^{2}+20^{2}} \\ & Z=25.0 \Omega \\ & I=\frac{V}{Z}=\frac{6.00}{25.0}=0.24 \mathrm{~A} \end{aligned}$	Correct phasor diagram with labels Correct inductor reactance Correct working for Z and I but uses L as X_{L} orfas ω	One error	Correct phasor diagram, and calculation of impedance AND current. $I=0.24(I=0.212 \mathrm{~A})$

(d)	The voltages across the capacitor and inductor are out of phase (opposite direction), so partially (or totally) cancel out. The supply voltage is constant. So the resistor voltage will increase and the current will increase. $\left(I=\frac{V_{\mathrm{S}}}{Z}\right)$ OR The reactance of the inductor and capacitor are out of phase (opposite direction), so partially (or totally) cancel out. $\left(Z=\sqrt{X_{\mathrm{C}}^{2}+X_{\mathrm{L}}^{2}}\right)$ The supply voltage is constant, so the current will increase. $\left(I=\frac{V_{\mathrm{s}}}{Z}\right)$	Voltage or reactance phasors are out of phase, so partially cancel out. Impedance decreases, so current increases. (The supply voltage is constant.)	Voltage or reactance phasors are out of phase, so partially cancel out. AND Impedance decreases, so current increases. (The supply voltage is constant.)	
2015(1) (a)	$\begin{aligned} & \omega=2 \pi f \\ & \omega=2 \pi \times 50=314 \end{aligned}$	$\omega=314 \mathrm{~s}^{-1}$		
(b)	$\begin{aligned} & X_{\mathrm{L}}=\omega L=2 \pi f L \\ & X_{\mathrm{L}}=2 \pi \times 50 \times 0.150=47.1 \Omega \end{aligned}$	Correct workings shown. (SHOW THAT Question)		

(c)	$\begin{aligned} & V_{\mathrm{L}}=I X_{\mathrm{L}}=0.656 \times 47.1=30.9 \mathrm{~V} \\ & V_{\mathrm{R}}=I R=0.656 \times 10.0=6.56 \mathrm{~V} \end{aligned}$	Calculates values for V_{L} and V_{R}. OR Draws phasors to represent V_{C} and V_{L} and V_{R} with correct phase shift.	Calculates values for V_{L} and V_{R}. AND Draws phasors to represent V_{c} and V_{L} and V_{R} with correct phase shift.	Calculates values for V_{L} and V_{R}. AND Draws phasors to represent V_{C} and V_{L} and V_{R} with correct phase shift and correct sizes.
(d)	In an AC circuit, V_{L} and V_{C} are 180° out of phase. $\begin{aligned} & \overbrace{V_{\mathrm{R}}}^{V_{\mathrm{C}}} \\ & V_{\mathrm{C}} \\ & Z=R \text { st resonance } I=\frac{V}{R}=\frac{12}{10}=1.20 \mathrm{~A} \end{aligned}$	V_{L} and V_{C} are 180° out of phase. $\begin{aligned} & X_{\mathrm{L}}=X_{\mathrm{C}} \\ & V_{\mathrm{L}}=V_{\mathrm{C}} \\ & I=1.20 \mathrm{~A} \text { (no explanation) } \end{aligned}$	The impedance of the inductor and the capacitor cancel out, due to the opposite phase of the capacitor and the inductor therefore $Z=R$. OR $X_{\mathrm{L}}=X_{\mathrm{C}}, Z=R$ OR Excellence answer but no explanation that Z is minimum	Explains why the impedance of the circuit is a minimum ie it equals the resistance of the circuit at resonance, describing the equal reactance but opposite phase of the inductance and the capacitance so $I=\frac{V}{R}=\frac{12}{10}=1.20 \mathrm{~A}$
$\begin{aligned} & \text { 2014(1) } \\ & \text { (a)(i) } \end{aligned}$	$\begin{aligned} & \frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}=\frac{V_{\mathrm{p}}}{V_{\mathrm{s}}} \\ & \frac{3000}{600}=\frac{240}{V_{\mathrm{s}}} \\ & V_{\mathrm{s}}=48 \mathrm{~V}_{\mathrm{ms}} \end{aligned}$	$V_{\mathrm{s}}=48 \mathrm{~V}$ ms		

(ii)	$\begin{aligned} V_{\text {peak }} & =\sqrt{2} \times V_{\mathrm{ms}} \\ V_{\text {peak }} & =\sqrt{2} \times 48 \\ V_{\text {peak }} & =67.9 \mathrm{~V} \end{aligned}$	$\begin{aligned} V_{\text {peak }}= & 67.89 \mathrm{~V} \\ V_{\text {peak }}= & \sqrt{2} \times V_{\text {ms }} \text { used with } \\ & \text { incorrect } V_{\text {ms }}- \end{aligned}$		
(b)	The rms voltage is the root mean squared voltage. The rms is a kind of average voltage used because the average of a sin function over time is zero. The rms voltage has the same magnitude as the DC voltage that would deliver the same power output as the AC voltage being described.	The rms is a kind of average voltage, used because the average voltage is zero because the voltage varies / sin wave. The rms voltage has the same magnitude as the DC voltage that would deliver the same power output as the AC voltage being described. Sketch showing AC voltage, average V and $V_{\text {rms }}$. Peak values reached for a short time only because of sin curve / V increasing and decreasing (it is the average V is wrong).		
(c)	$\begin{aligned} & X_{\perp}=2 \pi f L=2 \times \pi \times 50.0 \times 0.0165=5.184 \Omega \\ & Z=\sqrt{X_{\mathrm{L}}^{2}+R^{2}} \\ & Z=\sqrt{5.184^{2}+3.69^{2}}=6.36 \Omega \\ & X_{\mathrm{L}} \\ & \end{aligned}$	$X_{\mathrm{L}}=5.2 \Omega .$ Correct method of calculating Z using incorrect reactance. Correct phasor. No phasor but correct explanation.	Correct phasor diagram drawn with correct explanation. $Z=6.36 \Omega .$	
(d)	$\begin{aligned} & X_{\mathrm{C}}=X_{\mathrm{L}}=5.184 \\ & I_{\mathrm{ms}}=\frac{V_{\mathrm{ms}}}{R}=\frac{48.0}{3.69}=13.01 \mathrm{~A} \\ & V_{\mathrm{C}}=I \times X_{\mathrm{C}}=13.01 \times 5.184=67.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & x_{\mathrm{C}}=X_{\mathrm{L}} \\ & V_{\mathrm{C}}=V_{\mathrm{L}} \\ & Z=R \end{aligned}$ Calculated f_{0} and then X_{C} (X_{L} correct in 1c).	$\begin{aligned} & I_{\mathrm{ms}}=\frac{V_{\mathrm{ms}}}{R}=\frac{48.0}{3.69} \\ & =13.01 \mathrm{~A} \end{aligned}$ Calculated f_{0} and then $X_{\mathrm{C}}\left(X_{\mathrm{L}}\right.$ not calculated in 1c)	$\begin{aligned} & V_{\mathrm{c}}=I \times X_{\mathrm{c}}=13.01 \times 5.184 \\ & =67.4 \mathrm{~V} \end{aligned}$

2013(3) (a)	$\begin{aligned} & X_{\mathrm{c}}=\frac{1}{\omega \mathrm{C}}=\frac{1}{2 \pi f \mathrm{C}}=\frac{1}{2 \pi \times 450 \times 15.0 \times 10^{6}} \\ & =23.58=24 \Omega \end{aligned}$	Correct answer.		
(b)	The current is in phase with the resistance and the supply voltage is in phase with the impedance. $\theta=\cos ^{-1} \frac{55}{93}=53.74$ Current lags the supply voltage by 54° or 0.94 rad .	Recognition that voltage phase difference is the same as impedance phase difference. OR θ is labelled correctly in the diagram	Correct answer. 54° or 0.89 rad	
(c)	$\begin{aligned} & X_{\text {tot }}=X_{\mathrm{L}}-X_{\mathrm{C}} \\ & Z^{2}=X_{\text {tot }}^{2}+R^{2} \Rightarrow X_{\text {tot }}=\sqrt{Z^{2}-R^{2}} \\ & \Rightarrow X_{\text {tot }}=\sqrt{93^{2}-55^{2}}=74.99 \Omega \\ & \Rightarrow X_{\mathrm{L}}=74.99+23.58=98.57=99 \Omega \end{aligned}$	Correct $X_{\text {tot. }} 75 \Omega$ OR If the value of XL is substituted as 98.6 and then Z is calculated as 93Ω.	Correct answer 99Ω.	
(d)	To bring the circuit to resonance, the frequency must be changed to make the two reactances equal in value. X_{L} is directly proportional to f and X_{c} is inversely proportional to f so changing the frequency will increase one but decrease the other. $X_{\mathrm{L}}>X_{\mathrm{C}}$ and so to decrease X_{L} and increase X_{c}, frequency must be decreased.	Recognition that the frequency has to be decreased to make the $X_{c}=X_{L}$. OR Recognition that the frequency has to be decreased, as by decreasing f, the X_{L} decreases and X_{c} increases.	Achievement + By decreasing f, the X_{L} decreases and X_{c} increases.	

(e)	$\begin{aligned} & 220=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{L \times 15.0 \times 10^{-6}}} \\ & L=0.0350 \mathrm{H} \end{aligned}$	Correct answer. 0.0350H.		
(f)	When the circuit is in resonance, the current is greatest because the reactance is zero and so the impedance is smallest. When the current is greatest the sound from the speaker is loudest. The current decreases rapidly either side of resonance because the reactance increases either side of resonance. So if the frequency is reduced quickly through the resonant frequency and down below it, there will be a brief surge of current and so a brief burst of sound.	Recognition that the max sound happens at resonance. OR Recognition that the frequency must be changed down through the resonant frequency. OR Current-frequency diagram.	Achievement. AND Maximum current at resonance explained.	Full explanation linking greatest sound to maximum current and zero reactance / impedance $=R$ at resonance Rapid decline in current either side of resonance requires bringing the frequency quickly through the resonant frequency.
2012(3) (a)	$\begin{aligned} & 2 \pi f L=X_{\mathrm{L}} \\ & 2 \pi \times 2.7 \times 10^{7} \times 1.00 \times 10^{-6}=X_{1} \\ & =169.6 \Omega \\ & \approx 170 \Omega \end{aligned}$	Correct working.		
(b)	$\begin{aligned} & Z=\sqrt{170^{2}+47^{2}} \\ & Z=176.4 \Omega \\ & I=\frac{V}{Z} \\ & I=\frac{5.00}{176} \\ & I=0.0283 \mathrm{~A} \end{aligned}$	Correct impedance. 176.4Ω OR Incorrect impedance but consequentially correct calculation for current. 3 sf for the current value.	Correct current. $28.3 \mathrm{~mA}$	

(c)	$\begin{aligned} & \text { At resonance } X_{\mathrm{C}}=X_{\mathrm{L}} \\ & X_{\mathrm{C}}=\frac{1}{2 \pi f C} \\ & 169.6=\frac{1}{2 \pi \times 2.70 \times 10^{7} \times \mathrm{C}} \\ & C=3.47 \times 10^{-11} \mathrm{~F} \end{aligned}$	Demonstrates knowledge that at resonance. $X_{\mathrm{C}}=X_{\mathrm{L}}$ $3 \mathrm{sf}$	Correct answer.	
(d)	The current caused by 49 MHz circuit is much smaller than the current caused by 27 MHz . At $49 \mathrm{MHz}, \mathrm{XL}$ increases and Xc decreases, increasing the overall impedance, thus current decreases and the toy car does not respond due to smaller current. A1 27.0 MHz $Z=47 \Omega$ the current will be $\begin{aligned} & I=\frac{5.00}{Z} \\ & I=\frac{5.00}{47} \\ & I=106 \mathrm{~mA} \end{aligned}$ At 49.0 MHz $\begin{aligned} & 2 \pi \times 4.90 \times 10^{7} \times 1.00 \times 10^{-6}=X_{L} \\ & 307.9 \Omega=X_{1} . \end{aligned}$ $\begin{aligned} & X_{\mathrm{C}}=\frac{1}{2 \pi \times 4.90 \times 10^{7} \times 3.47 \times 10^{-11}} \\ & X_{\mathrm{C}}=93.6 \Omega \\ & Z=\sqrt{(307.9-93.6)^{2}+47^{2}} \\ & Z=219 \Omega \\ & I=\frac{5.00}{219}=22.8 \mathrm{~mA} \end{aligned}$	Circuit has greater impedance to 49 MHz. OR 49 MHz produces less current. Finds current 106 mA at 27.0 MHz .	At $49 \mathrm{MHz}, X_{\mathrm{L}}$ increase and X_{c} decreases. (So, the total impedance increases) and the current decreases. Correct current 106 mA and correct Z at $49 \mathrm{MHz}, 219 \Omega$. OR Incorrect value for 106 mA , but correct value 22.8 mA .	Correct current values 106 mA and 22.8 mA .

2011(1) (d)	- When the input voltage $>\mathrm{V}_{\mathrm{c}}$, the capacitor charges. - When the input voltage $<\mathrm{V}_{\mathrm{c}}$, the capacitor discharges. - Because it takes time to charge and discharge, the voltage across the capacitor remains more stable than the input. - Because V_{c} is proportional to Q. - This works if the time constant for the circuit is similar or larger than the time period of the signal.	Links smoothing to charge / discharge of capacitor.	Explanation includes time taken for capacitor to charge / discharge.	Clear links between time constant, changing charge on the capacitor and output voltage.
2011(2) (a)	$Z=\frac{V}{I}=\frac{10}{0.3}=33 \Omega$	Correct working and answer.		
(b)	Time period for the supply is 2.0 s . $\begin{aligned} & \omega=\frac{2 \pi}{T}=\frac{2 \pi}{2.0}=3.14 \mathrm{~s}^{-1} \\ & X_{\mathrm{C}}=\frac{V}{I}=\frac{1}{0.3}=3.3 \Omega=\frac{1}{\omega C} \\ & C=\frac{1}{\omega X_{\mathrm{C}}}=\frac{1}{3.14 \times 3.3}=0.096 \mathrm{~F} \end{aligned}$	Correct calculation of $\omega, \mathrm{T}, \mathrm{f}$ or X_{c}.	Correct calculation of ω and X_{c}.	Complete correct answer.
(c)	$\sin \theta=\frac{9}{10} \theta=64^{\circ} \text { or } 1.1 \mathrm{rad} .$	Shows $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}} \mathrm{V}_{\mathrm{S}}$ phasors in the correct directions.	Complete diagram showing enough correct detail for calculation of phase angle.	Complete correct answer.

(d)	$V_{L}>V_{c}$ resonance occurs when $V_{\mathrm{L}}=V_{\mathrm{C}}\left(\right.$ and $\left.X_{\mathrm{L}}=X_{\mathrm{C}}\right)$ $X_{\mathrm{L}} \propto f \text { and } X_{\mathrm{C}} \propto \frac{1}{f}$ Thus the frequency should be reduced, decreasing X_{L} and increasing X_{C}	Demonstrates understanding of the condition for resonance. OR Demonstrates understanding of how capacitive and inductive reactance are related to frequency.	Demonstrates understanding of the condition for resonance, AND Demonstrates understanding of how capacitive and inductive reactance are related to frequency.	
2011(2) (c)	At resonance $X_{\mathrm{C}}=X_{\mathrm{L}}$ $\begin{aligned} & \frac{1}{\omega C}=\omega L \\ & \frac{1}{L C}=\omega^{2} \\ & 2 \pi f=\sqrt{\frac{1}{L C}} \\ & f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \end{aligned}$	Understanding that at resonance $X_{C}=X_{L}$	Complete proof.	
(d)	Vary f and watch the ammeter. When current is max you are at the resonant frequency.	Correct method which must involve measuring voltage or current only.		
(e)	$\begin{aligned} & C=\frac{\varepsilon_{\mathrm{r}} \varepsilon_{0} A}{d} \\ & C=\frac{16.8 \times 8.85 \times 10^{-12} \times 0.0500 \times 0.0650}{0.0150} \\ & C=3.22 \times 10^{-11} \mathrm{~F} \\ & f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \\ & =\frac{1}{2 \pi} \sqrt{\frac{1}{0.786 \times 10^{-3} \times 3.22 \times 10^{-11}}} \\ & =1.00 \times 10^{6} \mathrm{~Hz}(1.00 \mathrm{MHz}) \end{aligned}$ Or shows that $X_{\mathrm{C}}=\frac{1}{\omega C}=\frac{1}{2 \pi} \times 10^{6} \times 3.24 \times 10^{-11}=4941$ $X_{\mathrm{L}}=2 \pi \times 10^{6} \times 0.786 \times 10^{-2}=4939$	Correct value for C.	Complete proof.	

(f)	When $\varepsilon_{\mathrm{r}} 16.9$ $\begin{aligned} & C=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} A}{d}=\frac{8.85 \times 10^{-12} \times 16.9 \times 3.25 \times 10^{-3}}{1.5 \times 10^{-2}} \\ & =3.24 \times 10^{-11} \mathrm{~F} \\ & \text { Or } C=\frac{16.9}{26} \times 4.99 \times 10^{-11}=3.24 \times 10^{-11} \mathrm{~F} \\ & X_{\mathrm{C}}=\frac{1}{\omega C}=\frac{1}{2 \pi \times 10^{6} \times 3.24 \times 10^{-11}}=4912 \Omega \\ & X_{\mathrm{L}}=2 \pi \times 10^{6} \times 0.786 \times 10^{-3}=4939 \Omega \\ & Z=\sqrt{R^{2}+\left(X_{\mathrm{L}}-X_{\mathrm{C}}\right)^{2}} \\ & Z=\sqrt{15^{2}+(4939-4912)^{2}}=30.89 \Omega \\ & I=\frac{V}{Z}=\frac{16}{30.89}=0.518 \mathrm{~A} \end{aligned}$	Correct calculation of C or either X, replacement evidence for e.	Correct calculation of Z.	Complete proof.
(g)	At resonance $\mathrm{Z}=\mathrm{R}$ $I=\frac{16}{15}=1.07 \quad \mathrm{~A}$ This reduces to 0.52 A . This produces a change in current of 0.57 A which is proportionally greater (51\%). So changes in moisture causing tiny changes in permittivity cause large changes in current which are easily measured. Compared with the capacitance meter, where small changes in ε_{r} make 0.6% change in C : $3.22 \times 10^{-11} \mathrm{~F} \rightarrow=3.24 \times 10^{-11} \mathrm{~F}$	Comments on changes in C or / relative to sensitivity.	Qualitative comparison. Change in current is bigger than the change in capacitance.	Calculated C and $/$ values which change, or ΔC and ΔI. Recognition that the change in current is greater than the change in capacitance, using numbers.
2009(1) (a)	$\begin{aligned} X_{C}=\frac{1}{\omega C} & =\frac{1}{2 \pi \times 200 \times 10^{-6}}=795.77 \\ & =800 \Omega \end{aligned}$	Correct answer		

(b)	Increasing f will increase ω and hence, because $X_{c}=\frac{1}{\omega C}$, it will decrease X_{c}. The current will thus increase because $V=I Z, V$ is fixed but Z depends on X_{c}	Idea increase in frequency decreases reactance	Achievement plus decrease in reactance linked to increase in current.	
(c)	At low frequency X_{C} is very large $\left(X_{C} \propto 1 / f\right)$ but X_{L} is very small ($X_{L} \propto f$). R is constant in all circuits, so Z depends on X. Circuit A has a capacitor only so has very low current $(I \propto 1 / X)$. Circuit B has both a capacitor and an inductor, but the high capacitor reactance is only slightly reduced by the low inductor reactance and so also has a low current. Circuit C has only an inductor so has a high current.	Correct choice with some explanation.	Clear explanation of why the current is high in C and why it is low in the other two circuits.	
(d)	For same current at same V need same impedance. Because R is the same, need same reactance: $\begin{aligned} & X_{C}=\frac{1}{\omega C}=X_{L}=\omega L \\ & \Rightarrow \omega=2 \pi f=\sqrt{\frac{1}{L C}}=10000 \\ & \Rightarrow 2 \pi f=10^{4} \Rightarrow f=1591=1600 \mathrm{~Hz} \end{aligned}$	Idea of same reactance OR Correct answer with wrong (e.g., resonance implied) explanation.	Correct answer.	
(e)(i)		Correct diagram.		

(b)	$\begin{aligned} & X_{L}=2 \pi f L \\ & =2 \pi \times 27 \times 10^{3} \times 1.30 \times 10^{-3}=221 \Omega \end{aligned}$	Correct working. OR use $X_{L}=221$ to work backwards to f or L.		
(c)	$\begin{aligned} X_{\mathrm{c}} & =\frac{1}{2 f C} \\ C & =\frac{1}{2 f X_{\mathrm{c}}} \\ & =\frac{1}{\left(2 \pi \times 27 \times 10^{3} \times 358\right)} \\ & =1.65 \times 10^{-8} \mathrm{~F} \end{aligned}$	Correct working.		
(d)		Correct orientation of capacitor and inductor voltage phasors.	Capacitor voltage phasor is longest, inductor phasor longer than resistor voltage phasor and supply voltage phasor shows correct understanding of phasor addition.	
(e)	$\begin{aligned} & \begin{aligned} V_{\mathrm{s}}=I Z & \\ I=\frac{V_{\mathrm{s}}}{Z} & \\ & Z \\ & =\sqrt{ }\left(\left(X_{\mathrm{C}}-X_{\mathrm{L}}\right)^{2}+R^{2}\right) \\ & =\sqrt{ }\left((358-221)^{2}+70.0^{2}\right) \\ & =153.8 \Omega \\ I=\frac{200}{154} & =1.30 \mathrm{~A} \end{aligned} \end{aligned}$ With rounding $Z=154.6$ so $/=1.29 \mathrm{~A}$.		Correct impedance (accept correctly worked solutions that have rounding errors).	Correct answer (Accept correctly worked solutions that have rounding errors).

(f)	The iron pan increases the magnetic field / flux around the coil (compared with a non-magnetic pan). Thus, the change in field is greater, so the inductance is greater.	Links to increased field / flux or change in field / flux. OR inductance increases	Links to increased field and links change in field to inductance (e.g., Faraday's law, etc.).	
(g)	Resonance occurs when supply (driving) frequency $=$ natural frequency $/ X_{\mathrm{C}}=X_{\mathrm{L}} /$ $V_{C}=V_{\mathrm{L}} /$ when supply frequency causes maximum current.	One correct statement.		
(h)	At resonance, impedance $=$ resistance $\begin{aligned} & =70.0 \Omega \\ & I=\frac{V}{R}=\frac{200}{70.0}=2.86 \mathrm{~A} \end{aligned}$		Correct answer.	
2007(2) (c)	$\underset{V_{\mathrm{C}}}{\underset{\mathrm{~L}}{V_{\mathrm{L}}} V_{\mathrm{R}}}$	Correct diagram. V_{L} leading etc Accept L, C, R or $\mathrm{X}_{\mathrm{c}}, \mathrm{X}_{\mathrm{L}}, \mathrm{R}$		
(d)	Voltage phasors have a direct relationship with reactance vectors. If $X_{\mathrm{C}}>X_{\mathrm{L}}, X_{\mathrm{tot}}$ is capacitative and so, when combined with R, will give a vector $\boldsymbol{\Downarrow}$. The phasor for $V_{\text {supply }}$ will therefore be in the same direction. As phasors rotate anticlockwise, and as I is in phase with V_{R}, I will lead $V_{\text {supply. }}$. $V_{\text {supply }}$ is the vector addition of the directions of V_{R} and $\left(\mathrm{V}_{\mathrm{c}}-\mathrm{V}_{\mathrm{L}}\right)$.	$V_{\text {supply }}$ lags.	Must explain why $V_{\text {supply. }}$ lags. Can use diagrams with explanation	States (or proves) Vc or V_{L} in same direction as their reactances or $V_{\text {supply }}$ in same direction as Z.
(e)	$\begin{aligned} & \omega=2 \pi f=2 \times \pi \times 81.6 \\ & =512.708=513 \mathrm{rad} \mathrm{~s}^{-1} \end{aligned}$	Correct answer.		

(f)	This is a SHOW question $\begin{aligned} x_{C} & =\frac{1}{\omega C}=\frac{1}{512.708 \times 2.00 \times 10^{-4}} \\ & =\frac{1}{0.1025415} \\ & =9.75214 \Omega) \end{aligned}$	Correct working.		
(g)	$\begin{aligned} & V=I Z, Z^{2}=\left(X_{C}-X_{L}\right)^{2}+R^{2} \\ & \Rightarrow Z^{2}=(9.75214-1.65)^{2}+18^{2} \\ & \Rightarrow Z=19.7394 \\ & \Rightarrow I=\frac{15}{19.7394}=0.75990=0.76 \mathrm{~A} \\ & \\ & 8.1 \Omega \end{aligned}$		Consistent answer with incorrectly calculated Z . Must use a vector diagram for calculation of Z OR Correct formula but have incorrectly substituted or calculated Z	Correct answer. $\begin{aligned} & I=\frac{15}{19.7394} \\ & =0.75990 \mathrm{~A} \\ & =0.76 \mathrm{~A} \end{aligned}$
(h)	The car becomes part of the core of the coil, which increases inductance.	Idea of car becoming the part of the core.		
(i)	Increasing the inductance of the coil increases its reactance and so brings its reactance closer to the capacitor reactance. This means the total reactance decreases. As the impedance is a combination of resistance and reactance, decreasing the reactance will also decrease the impedance. As the current is inversely proportional to the impedance, decreasing the impedance will increase the current.		Current increases and either of X_{L} increases (as L increases) and $x_{\mathrm{L}} \rightarrow X_{\mathrm{c}} \text { or }\left(X_{\mathrm{L}}-X_{\mathrm{c}}\right) \rightarrow 0$ OR Resonance occurs and states one of its conditions $X_{\mathrm{L}}=X_{\mathrm{C}}, V_{\mathrm{L}}=V_{\mathrm{C}}, Z \text { at } \min V_{\mathrm{R}}=V_{\mathrm{S}}$	```Current increases and XL increases (as L increases) and XL}->\mp@subsup{X}{\textrm{C}}{ and Z reduces```

(j)	$\begin{aligned} & I=\frac{V}{Z} \text {, at resonance } Z= \\ & \Rightarrow I=\frac{15}{18}=0.83333=0.83 \mathrm{~A} \end{aligned}$		Correct answer.	
(k)	$\begin{aligned} & X_{\mathrm{L}}=\omega \mathrm{L}=X_{\mathrm{C}}=9.75 \\ & \Rightarrow \mathrm{~L}=\frac{9.75}{512.708}=0.01902=19 \mathrm{mH} \end{aligned}$		Correct answer.	
(1)	$E=1 / 2 Q V, Q=V C \Rightarrow E=1 / 2 C V c^{2}$ At resonance $V_{C}=I_{\max } X_{C}$ $\begin{aligned} & \Rightarrow E=1 / 2 \times 200 \times 10^{-6} \times(0.83333 \times 9.75)^{2} \\ & =0.0066015=0.0066 \mathrm{~J}=6.6 \mathrm{~mJ} \end{aligned}$ OR $\begin{aligned} & E=1 / 2 L I^{2}=E=1 / 2 \times 0.01902 \times 0.833^{2} \\ & =0.006604 \mathrm{~J} \end{aligned}$ Watch consistency with $2 \mathrm{j}(\mathrm{I}=0.8333)$ and $2 \mathrm{k}(\mathrm{L}=$ 19 mH).	If use $\begin{aligned} & V_{\mathrm{C}}=15 \sqrt{ } 2(21.21 \mathrm{~V}) \quad E=45 \mathrm{~mJ} \\ & V_{\mathrm{c}}=15 \quad E=22.5 \mathrm{~mJ} \\ & V_{\mathrm{c}}=(0.833 \times 9.75) \times \sqrt{ } 2 \\ & =8.1245 \times \sqrt{ } 2 \\ & E=13.2 \mathrm{~mJ} \end{aligned}$	Correct answer consistent with incorrectly calculated V c. or Uses formula $E=1 / 2 L L^{2}$	Correct answer. or Uses formula $E=1 / 2 L I^{2}$ and (consistently) subs L and I to correctly calculate E
(m)			Graph shapes are correct except that only one half cycle shown (unless the time axis label shows this cycle is $1 / 2$ period).	Graph shapes are correct. Axis label correct. $T=12.25 \mathrm{~s}$
2006(3) (a)	$\begin{array}{ll} \omega=2 \pi f & =2 \times \pi \times 50 \\ =314.159 & =310 \mathrm{rad} \mathrm{~s}^{-1} \end{array}$	Correct answer.		

(b)	$\begin{aligned} & X_{L}=\omega L=314.159 \times 8.3 \times 10^{-2} \\ & =26.0752=26 \Omega \end{aligned}$	Correct working.		
(c)	$\begin{aligned} & X_{\mathrm{C}}=X_{\mathrm{tot}}+X_{\mathrm{L}} \text { or } X_{\mathrm{L}}-X_{\mathrm{tot}} \\ & X_{\mathrm{tot}}=\sqrt{Z^{2}-R^{2}} \\ & Z=\frac{V}{I}=\frac{12}{0.42}=28.5714 \\ & X_{\mathrm{tot}}=\sqrt{28.5714^{2}-8.5^{2}} \\ & =27.2778 \\ & \therefore X_{\mathrm{C}}=X_{\mathrm{tot}}+X_{\mathrm{L}}\left(X_{\mathrm{C}} \text { must be }+\mathrm{ve}\right) \\ & =27.2778+26=53.2778=53 \Omega \end{aligned}$	Correct Z. Recognition of the phasor relationship between reactance, resistance and impedance.	Correct $X_{\text {tot }}$ or correct X_{c} consistent with incorrect $X_{\text {tot }}$.	Correct answer.
(d)	The current in the circuit depends on the total impedance. Total impedance is the combination of resistance and total reactance. Total reactance is the difference between the inductor reactance and the capacitor reactance. Changing the capacitance of the capacitor will change the reactance of the capacitor, and hence the total impedance, and hence the current.	Change in capacitance causes a change in reactance / impedance.	Change in capacitance causes a change in capacitor reactance and therefore a change in total reactance / impedance.	Recognition that current depends on impedance, and a change in capacitance causes a change in capacitor reactance, causing a change in total reactance, and hence impedance.
(e)	$\begin{aligned} & I=\frac{V}{R}=\frac{12}{8.5}=1.41176 \\ & =1.4 \mathrm{~A} \end{aligned}$		Correct answer.	

2005(2) (d)	$\begin{aligned} \phi & =\mathrm{B} \times \mathrm{A}=0.21 \times 5.20 \times 10^{-3} \\ & =1.092 \times 10^{-3}=1.1 \times 10^{-3} \mathrm{~Wb} \end{aligned}$ or $\begin{aligned} \phi & =\mathrm{B} \times \mathrm{A}=0.21 \times 5.20 \times 10^{-3} \times 500 \\ & =1.092 \times 10^{-3} \times 500 \\ = & 0.546=0.55 \mathrm{~Wb} \end{aligned}$	Correctanswer. $1.1 \times 10^{-3} \mathrm{~Wb}$ OR $0.55 \mathrm{~Wb}$		
(e)	$\begin{aligned} & V=-\frac{\Delta \varphi}{\Delta t}=-\frac{0.546}{t} \\ & t=\text { time to turn from vertical to horizontal } \\ & =1 / 4 \text { period. } \\ & T=0.5 \mathrm{~s}, \text { so } t=0.125 \mathrm{~s} \\ & \Rightarrow V=\frac{0.546}{0.125}=4.368 \mathrm{~V}=4.4 \mathrm{~V} \end{aligned}$	Correct time (0.125 s) OR Incorrect time but correct flux change. (For instance, $8.72 \times 10^{3} \mathrm{~V}$ would be A)	Correctanswer. Look for consistency from 2(d).	
(f)		EITHER voltage doubled (between 13 V and 15 V) Bottom or top would be sufficient OR Period halved. Does not need to be exact but intention of halving is indicated.	BOTH voltage doubled AND period halved.	
2005(3) (a)	$\begin{aligned} V_{\max } & =V_{\operatorname{rms}} \times \sqrt{2}=6.00 \times \sqrt{2} \\ & =8.48528 \quad \mathbf{8 . 4 9} \mathbf{V} \end{aligned}$	Correctanswer.		

(b)	As this is an AC circuit the voltages across the components are not in phase with each other, they have to be added vectorially. If use $V_{S}=\sqrt{V_{R}^{2}+\left(V_{C}-V_{L}\right)^{2}}$ without some relevant explanation then \mathbf{N}	ONE correct and relevantstatement: voltages out of phase OR voltages added vectorially. OR shows a labelled LRC vector diagram (VL, VR, VC not in the correct order)	voltages out of phase AND voltages added vectorially. OR shows a labelled LRC diagram. (must have VL, VR, VC in the correct order) If VS is shown it must lag the current or VR.	
(c)	This is a show question $I=\frac{V_{R}}{R}=\frac{5.99}{18.5}=0.324 \mathrm{~A}=324 \mathrm{~mA}$ Note: V_{R} must be 5.99 (not 6.00) OR use $V_{\mathrm{L}} / X_{\mathrm{L}}$ and $X_{\mathrm{L}}=\omega L$ $\begin{aligned} & X_{L}=2 \pi f L=2 \pi \times 100 \times 3.6 \times 10^{-3} \\ & =2.26 \Omega \\ & I=\frac{V_{L}}{X_{l}}=\frac{0.733}{2.26}=(0.324 \mathrm{~A}) \\ & (=324 \mathrm{~mA}) \end{aligned}$	Correctanswer.		

(d)	This is a show question $\begin{aligned} & X_{\mathrm{c}}=\frac{V_{\mathrm{c}}}{I}=\frac{0.808}{0.324}=2.494 \Omega \\ & X_{\mathrm{C}}=\frac{1}{2 \pi f C} \\ & C=\frac{1}{2 \pi f X_{C}} \\ & =\frac{1}{2 \pi \times 100 \times 2.494} \\ & =6.38 \times 10^{-4} \\ & =638 \mu \mathrm{~F} \end{aligned}$	Either $X_{C}=\frac{V_{C}}{I}$ or $X_{C}=\frac{1}{2 \pi f C}$ or $X_{c}=\frac{1}{\omega C}$ seen in their working (alone or substituted into).	X_{C} correct $(=2.494 \Omega)$ and $X_{C}=\frac{1}{2 \pi f C}$ given or correctly substituted into.	Correct rearrangement $C=\frac{1}{2 \pi \times 100 \times 2.494}$
(e)	This is a show question Resonant frequency when $X_{\mathrm{C}}=X_{\mathrm{L}}$ For this capacitor and inductor: $\frac{1}{2 \pi f C}=2 \pi f L$ rearranging gives $\begin{aligned} & f^{2}=\frac{1}{4 \pi^{2} L C} \\ & f=\frac{1}{2 \pi \sqrt{L C}} \\ & =\frac{1}{2 \pi \sqrt{6.38 \times 10^{-4} \times 3.6 \times 10^{-3}}} \\ & =105.0167(\mathrm{~Hz}) \\ & (=105 \mathrm{~Hz}) \end{aligned}$ If the following is used there must be some relevant discussion given. Otherwise N. $f=\frac{1}{2 \pi \sqrt{L C}}$	Any condition sufficient for resonance $\begin{gathered} X_{C}=X_{L} \\ V_{C}=V_{L} \end{gathered}$ X_{L} and X_{C} cancel out (or 180° out of phase) $V_{s}=V_{R}$ Minimum impedance Maximum current.	The following statement given $\frac{1}{2 \pi f C}=2 \pi f L$	Merit plus correct rearrangement and substitution into $\begin{aligned} & f=\frac{1}{2 \pi \sqrt{L C}} \\ & f=\frac{1}{2 \pi \sqrt{6.38 \times 10^{-4}} \times 3.6 \times 10^{-3}} \\ & f=\frac{1}{9.522 \times 10^{-3}} \\ & (-105 \mathrm{~Hz}) \end{aligned}$

(f)	When metal is brought close to the detector, the inductance of the inductor increases slightly. This has the effect of reducing the resonant frequency of the circuit, bringing it closer to the AC supply frequency. As a result the current in the circuit will increase to peak when the resonant frequency is 100 Hz . This will be shown in the circuit by an increased ammeter reading.	ONE correct and relevantstatement. Typically, statements could be The inductance of the inductor changes OR The resonant frequency of the circuit changes (because of the metal) OR The current increases.	Links inductance changing and resonant frequency changing and reduced $f_{\text {o }}$ Typically, linkages could be The inductance of the inductor changes, (reduces) lowering the resonant frequency (of the circuit) OR The inductance of the inductor changes. This causes X_{C} and X_{L} to be closer in value (or V_{C} and V_{L} to be closer in value). OR X_{C} and X_{L} are closer in value (or V_{C} and V_{L} are closer in value) so impedance is smaller, therefore the current increases.	The explanation clearly links the change in inductance, change in resonant frequency and increased current. The inductance of the inductor increases. This causes X_{C} and X_{L} to be closer in value (or V_{C} and V_{L} to be closer in value). Therefore the current will become larger (because the impedance is smaller).

In 2013, AS 91526 replaced AS 90523.

The Mess that is NCEA Assessment Schedules....

In AS 90523 there was an Evidence column with the correct answer and Achieved, Merit and Excellence columns explaining the required level of performance to get that grade. Each part of the question (row in the Assessment Schedule) contributed a single grade in either Criteria 1 (Explain stuff) or Criteria 2 (Solve stuff).

From 2003 to 2008, the NCEA shaded columns that were not relevant to that question.
In 91526 , from 2013 onwards, each part of a question contributes to the overall Grade Score Marking of the question and there are no longer separate criteria. There is no shading anymore. There is no spoon. At least their equation editor has stopped displaying random characters over the units.

