DEMONSTRATE KNOWLEDGE OF SCIENCE IN RELATION TO A VEHICLE

SCIENCE 18976 Version 2

Level 1, 2 Credits

element 1 Describe the main parts of a vehicle.
element 2 Calculate the speed of a vehicle.
element 3 Describe how factors influence stopping distance.

Main parts of the car

DRIVE SHAFT - takes the energy from the engine to the wheels by connecting the motor to the wheel axles
GEARS - increases or decreases the speed of rotation.

Speed

Speed is distance divided by time: $\quad \mathbf{s}=\mathbf{d} / \mathbf{t}$.
Sometimes we use the letter v for "speed": v=d/t.
Speed (s) and velocity (v) are not exactly the same but at this level we will assume they are.

Units of Speed

Speed has units like km/h (kilometers per hour) or km/s (kilometers per second) or m/s (metres per second)
Sometimes meters per second, m / s, is written as ms^{-1}, and km / h as kmh^{-1}. In this course you can use either but don't do them both $\mathrm{eg} \mathrm{km} / \mathrm{s}^{-1}$ is WRONG!

Example calculations

1. Two students had a bike race over 150 metres. Student A took 35 seconds and student B took 31 seconds. Who went the fastest?

Student B (as she did the 150 m in less time than A)
2. Alan travels 100 km in 2.5 hours. Find his average speed in km / h.

$$
v=d / t \quad v=100 / 2.5 \quad v=40 \mathrm{~km} / \mathrm{h}
$$

3. A cyclist covers 900 m and takes 60 seconds. Use $\mathrm{v}=\mathrm{d} / \mathrm{t}$ to find the speed of the bike.

$$
v=d / t \quad v=900 / 60 \quad v=15 \mathrm{~m} / \mathrm{s}
$$

Stopping Distances

$$
\text { Stopping distance }=\text { reaction distance }+ \text { braking distance }
$$

Speed km/h	10	20	30	40	50	60	70	80	90	100
Reaction Distance (m)	2.7	5.5	8.3		13.8	16.6	19.4	22.2	25	27.7
Braking Distance (m)	0.8	2.5	5.2	9.5	15.5	21.4	29.1	38.3		59.8
Stopping Distance (m)	3.5	8		20.5	29	38	48.5	60.5	73	87.5

The stopping distance at $30 \mathrm{~km} / \mathrm{h}$ is $8.3+5.2=13.5 \mathrm{~m}$
The reaction distance at $40 \mathrm{~km} / \mathrm{h}$ is $20.5-9.5-11 \mathrm{~m}$
The braking distance at $90 \mathrm{~km} / \mathrm{h}$ is $73-25=48 \mathrm{~m}$

Factors that influence stopping distance of a car are:

- speed - the faster a car is traveling, the longer it takes to stop.
- reaction time - the reaction times of some elderly people are slower; drugs including alcohol will also affect reaction times, making them slower. Stopping distances increase when reaction times are slow.
- tyre tread - since tread affects how well a tyre grips the road, worn tyres will mean that stopping distances are greater. More tread means shorter stopping distances.
- surface - some surfaces are more slippery (eg gravel road, or a wet or icy road) and stopping distances are increased on these surfaces as there is less friction.
- mass - the bigger the mass the more "momentum" an object has, and so a big car will taker longer to stop than a smaller one, even if all other things are the same.

