

T precipitation T

() = dissolved ions, ions in solution () = solid = precipitate

- Identify the precipitate using the solubility rules
- Write its formula; use table of ions and (s)
- Write the formulae of the ions; and (aq)
- Balance it if necessary.

Coloured precipitates

copper carbonate

lead iodide P

Pb12

THE REST WE NEED TO KNOW ARE WHITE!!!

Coloured solutions - SOLUTIONS CONTAINING

 $Cu^{2+}(aq) = blue$ $unless in CuCl_2 then blue-green$ $Fe^{2+}(aq) = pale green$

... DISPLACEMENT REACTIONS ...

metal 1(s) + metal 2 solution (aq) \rightarrow metal 2(s) + metal 1 solution (aq)

- Use the activity series if metal 1 is more active/reactive than metal 2 then a displacement reaction will occur.
- The more reactive metal will displace a less reactive metal from a solution of its ions.

 $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $Cu^{2+} + 2e^{-} \rightarrow Cu$ $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Cu²⁺(aq)

SO₄²⁻(aq) & Zn²⁺(aq) are colourless The silvery grey zinc would be covered in a _____ coating of ____ metal. The blue solution (blue because of the ____) would fade and eventually become colourless as ____ and ____ are both ____ .