

91390

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MĀTAURANGA O AOTEAROA

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

Level 3 Chemistry, 2019

91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

2.00 p.m. Thursday 14 November 2019 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence	
Demonstrate understanding of thermochemical principles and the properties of particles and substances.	Demonstrate in-depth understanding of thermochemical principles and the properties of particles and substances.	Demonstrate comprehensive understanding of thermochemical principles and the properties of particles and substances.	

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table and relevant formulae are provided in the Resource Booklet L3–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL	
	ASSESSOR'S USE ONLY

© New Zealand Qualifications Authority, 2019. All rights reserved.

No part of this publication may be reproduced by any means without the prior permission of the New Zealand Qualifications Authority.

QUESTION ONE

(a) Complete the following table.

Symbol	Electron configuration (use <i>s</i> , <i>p</i> , <i>d</i> notation)
Cr	
Fe ³⁺	
Ge	

(b) Complete the following table.

	SF ₄	SF ₃ ⁻
Lewis structure		
Name of shape		

(c) (i) Explain why the radii of the S atom and the S^{2-} ion are different.

	Radius/pm
S atom	104
S ^{2–} ion	184

(ii) Justify the difference in electronegativities for oxygen, sodium, and sulfur.

Element	Electronegativity	
Oxygen, O	3.44	
Sodium, Na	0.93	
Sulfur, S	2.58	

ASSESSOR'S USE ONLY

ASSESSOR'S USE ONLY

(d) The Lewis structure of ClF_5 is given below.

Identify and explain the shape and polarity of ClF_5 .

QUESTION TWO

(a) The equation for the vaporisation of hexane is:

 $\mathrm{C_6H_{14}}(\ell) \to \mathrm{C_6H_{14}}(g)$

Circle the term that best describes this process:

Exothermic

Endothermic

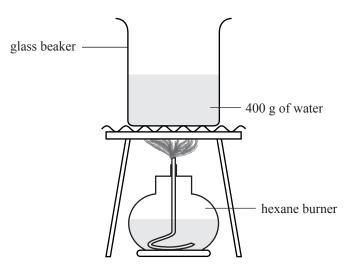
Give a reason for your choice.

(b) The equation for the formation of liquid hexane is:

 $6\mathrm{C}(s) + 7\mathrm{H}_2(g) \rightarrow \mathrm{C}_6\mathrm{H}_{14}(\ell)$

Calculate the standard enthalpy of formation for liquid hexane, $\Delta_{f}H^{\circ}(C_{6}H_{14}(\ell))$, using the following data:

$$\begin{split} \mathsf{C}_{6}\mathsf{H}_{14}(\ell) + 9.5\mathsf{O}_{2}(g) \to \mathsf{6CO}_{2}(g) + \mathsf{7H}_{2}\mathsf{O}(\ell) & \Delta_{c}H^{\circ}(\mathsf{C}_{6}\mathsf{H}_{14}(\ell)) = -4163 \text{ kJ mol}^{-1} \\ \Delta_{c}H^{\circ}(\mathsf{C}(s)) = -394 \text{ kJ mol}^{-1} \\ \Delta_{c}H^{\circ}(\mathsf{H}_{2}(g)) = -286 \text{ kJ mol}^{-1} \end{split}$$


ASSESSOR'S USE ONLY

- (c) The enthalpy of combustion of liquid hexane, $\Delta_c H(C_6H_{14}(\ell))$, can be determined by burning a known mass of hexane and measuring the temperature change in a known mass of water above the burning hexane.
 - (i) If 5.22 g of hexane is burned, the temperature of 400 g of water increases from 20.5°C to 36.7°C.

Using these results, calculate an experimental value of $\Delta_c H(C_6H_{14}(\ell))$.

The specific heat capacity of water is 4.18 J g^{-1} °C⁻¹.

 $M(C_6H_{14}) = 86.0 \text{ g mol}^{-1}$

(ii) Explain why the experimental value obtained in part (c)(i) is less negative than the theoretical value of -4163 kJ mol⁻¹, given in part (b).

ASSESSOR'S USE ONLY

QUESTION THREE

- ASSESSOR'S USE ONLY
- (a) List all the forces of attraction between the following molecules in their liquid state.

Molecule	Boiling point/ °C	Attractive forces
Ammonia, $NH_3(\ell)$	-33.3	
Ethane, $C_2H_6(\ell)$	-88.6	
Methanamine, $CH_3NH_2(\ell)$	-6.3	

- (b) (i) Using the data in the above table, identify the molecule that has the strongest forces of attraction between its molecules.
 - (ii) Justify why methanamine has a higher boiling point than ethane.

9

(iii) Justify why methanamine has a higher boiling point than ammonia.

ASSESSOR'S USE ONLY

(c) Ammonia, NH₃, reacts with methane, CH₄, in the following reaction: $CH_4(g) + NH_3(g) \rightarrow HCN(g) + 3H_2(g)$

Calculate the enthalpy change, $\Delta_r H^\circ$, for this reaction using the following data.

 $\begin{array}{lll} \Delta_{\rm f} H^{\circ}({\rm NH}_{3}(g)) &= -45.9 \ {\rm kJ \ mol^{-1}} \\ \Delta_{\rm f} H^{\circ}({\rm CH}_{4}(g)) &= -74.9 \ {\rm kJ \ mol^{-1}} \\ \Delta_{\rm f} H^{\circ}({\rm HCN}(g)) &= +135 \ {\rm kJ \ mol^{-1}} \end{array}$

Question Three continues on the following page.

ASSESSOR'S USE ONLY

(d) Ammonia reacts with oxygen according to the equation below.

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$
 $\Delta_r H^\circ = -906 \text{ kJ mol}^{-1}$

Justify, in terms of the entropy changes of the system and surroundings, why the reaction is spontaneous.

Extra space if required. Write the question number(s) if applicable.	A
	_
	-
	-
	_

	I	Extra space if i	required.	ASSESSOR'S USE ONLY
QUESTION NUMBER	Write the d	question numb	er(s) if applicable.	
				_
				_
				_
				_
				_
				_
				_
				 _
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_
				_