Assessment Schedule - 2019

Physics: Demonstrate understanding of electricity and electromagnetism (91173)

Evidence Statement

Q	Evidence	Achievement	Merit	
ONE (a)	$I=\frac{V}{R}=\frac{4}{5}=0.8 \mathrm{~A}$	- Show question.		
(b)	$P=\frac{E}{t}$ so $E=0.8 \times 11 \times 120=1056$ Joules	- Correct power $=8.8 \mathrm{~W}$ - Finds E by using $t=2(17.6 \mathrm{~J})$. Or any power multiplied by 120	- Correct answer.	
(c)	$\left(\frac{1}{6+5.6}+\frac{1}{3.2}\right)^{-1}=2.51 \Omega$	- Finds 11.6.	Or has $\frac{1}{3.2}$.	Not $6+5.6+3.2$

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$E=\frac{V}{d}=\frac{550 \times 10^{3}}{1.2}=4.6 \times 10^{5} \mathrm{Vm}^{-1}$	- Correct answer.		
(b)	$E=\frac{1}{2} m v^{2}=E q d$ Double v means $4 \times$ the kinetic energy, which means $4 \times$ the stopping distance as E, q and m constant.	- Distance increases. Includes distance doubles.	- 4 times the stopping distance.	
(c)	\square	- At least one arrow showing correct field direction.	- Correct answer.	
(d)	$\begin{aligned} & \frac{1}{2} m v^{2}=E q d \\ & \Rightarrow \frac{1}{2} \times 0.13 v^{2}=4.6 \times 10^{5} \times 3.5 \times 10^{-6} \times 1.2 \\ & v=5.45 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	- Made one valid step to the solution.	- One error.	Correct answerallowing for incorrect part a.

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	$\begin{aligned} V & =B v L=4.73 \times 10^{-6} \times 13.5 \times 0.42 \\ & =2.68 \times 10^{-4} \mathrm{~V} \end{aligned}$ Show question.	Show question Accept use of 42		
(b)	The electrons are cutting the magnetic field as the handlebars move. There is a force on the electrons that causes a charge separation. The two ideas are movement across field and charge separation. Not "in or entering a magnetic field"	- ONE of: - Movement across B. - Charge separation.	- Both.	
(c)(i) (ii)	Voltage is less. Because the component of the velocity at 90° to the magnetic field has decreased. Must refer to movement.	- Induced voltage is less.	- Correct answer to (i) and a valid reason. E.g. horizontal speed less. - Crosses field lines slower. OR similar.	
(d)	$\begin{aligned} & V=B v L=0.8 \times 1.2 \times 3.1=2.976 \\ & V=I R \text { so } I=0.5952 \\ & \text { and } F=B I L=0.8 \times 0.5952 \times 1.2=0.571 \mathrm{~N} \end{aligned}$	- Correct voltage. Or Uses 1.5 m twice (0.89 N)	- One error, uses $L=1.5$ once $(0.714 \mathrm{~N})$ (0.714 N)	- Correct answer. $0.571 \mathrm{~N}$

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
$0-7$	$8-14$	$15-19$	$20-24$

